Stability of Equilibrium Solutions in Planar Hamiltonian Difference Systems

被引:0
作者
Carcamo, Cristian [1 ]
Vidal, Claudio [1 ]
机构
[1] Univ Biio Bio, Fac Ciencias, Dept Mat, Santiago, Chile
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2015年 / 67卷 / 06期
关键词
difference equations; Hamiltonian systems; stability in the Lyapunov sense; TIME SCALES; DISCONJUGACY;
D O I
10.4153/CJM-2014-040-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the stability in the Lyapunov sense of the equilibrium solutions of discrete or difference Hamiltonian systems in the plane. First, we perform a detailed study of linear Hamiltonian systems as a function of the parameters. In particular we analyze the regular and the degenerate cases. Next, we give a detailed study of the normal form associated with the linear Hamiltonian system. At the same time we obtain the conditions under which we can get stability (in linear approximation) of the equilibrium solution, classifying all the possible phase diagrams as a function of the parameters. After that, we study the stability of the equilibrium solutions of the first order difference system in the plane associated with mechanical Hamiltonian systems and Hamiltonian systems defined by cubic polynomials. Finally, we point out important differences with the continuous case.
引用
收藏
页码:1270 / 1289
页数:20
相关论文
共 29 条
[1]  
Agarwal R. P., 2000, MONOGRAPHS PURE APPL, V228
[2]  
AGARWAL RP, 1999, DYNAMIC SYSTEMS APPL, V8, P307
[3]  
Ahlbrandt C. D., 1996, KLUWER TEXTS MATH SC, V16
[4]   Hamiltonian systems on time scales [J].
Ahlbrandt, CD ;
Bohner, M ;
Ridenhour, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) :561-578
[5]   Linear Hamiltonian dynamic systems on time scales: Sturmian property of the principal solution [J].
Bohner, M ;
Dosly, O ;
Hilscher, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (02) :849-860
[6]   Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions [J].
Bohner, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (03) :804-826
[7]  
Bohner M., 2005, FASC MATH, P35
[8]  
Cárcamo Cristian, 2012, Proyecciones (Antofagasta), V31, P391
[9]   Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms [J].
Chen WenXiong ;
Yang MinBo ;
Ding YanHeng .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) :2583-2596
[10]  
Chetaev NG., 1961, The Stability of Motion