Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem

被引:43
作者
Bellassoued, Mourad [1 ]
Choulli, Mourad [2 ,3 ]
Yamamoto, Masahiro [4 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dept Math, Jarzouna Bizerte 7021, Tunisia
[2] Univ Paul Verlaine Metz, Lab LMAM, UMR 7122, F-57045 Metz, France
[3] CNRS, F-57045 Metz, France
[4] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
关键词
BOUNDARY-VALUE PROBLEM; HYPERBOLIC PROBLEM; COEFFICIENTS; UNIQUENESS; DIRICHLET; OPERATORS;
D O I
10.1016/j.jde.2009.03.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stability in an inverse problem of determining the potential q entering the wave equation partial derivative(2)(t)u - Delta u + q(x)u = 0 in a bounded smooth domain of R-d from boundary observations. The observation is given by a hyperbolic (dynamic) Dirichlet to Neumann map associated to a wave equation. We prove a log-type stability estimate in determining q from a partial Dirichlet to Neumann map provided that q is a priori known in a neighbourhood of the boundary of the spatial domain and satisfies an additional condition. Next, we use this result to establish a stability estimate related to the multidimensional Borg-Levinson theorem. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:465 / 494
页数:30
相关论文
共 25 条
[1]   STABILITY FOR A MULTIDIMENSIONAL INVERSE SPECTRAL THEOREM [J].
ALESSANDRINI, G ;
SYLVESTER, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (05) :711-736
[2]  
[Anonymous], 1962, PARTIAL DIFFERENTIAL
[3]  
BAO G, STABILITY INVERSE PR
[4]   Boundary control in reconstruction of manifolds and metrics (the BC method) [J].
Belishev, MI .
INVERSE PROBLEMS, 1997, 13 (05) :R1-R45
[5]   Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map [J].
Bellassoued, M. ;
Jellali, D. ;
Yamamoto, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) :1036-1046
[6]   Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation [J].
Bellassoued, M .
INVERSE PROBLEMS, 2004, 20 (04) :1033-1052
[7]  
Bellassoued M., 2006, Appl. Anal., V85, P1219, DOI [10.1080/00036810600787873, DOI 10.1080/00036810600787873]
[8]   On the hyperbolic Dirichlet to Neumann functional [J].
Cardoso, F ;
Mendoza, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (7-8) :1235-1252
[9]  
CHOULLI M, 2009, MATH APPL B IN PRESS
[10]   Determination of coefficients for a dissipative wave equation via boundary measurements [J].
Cipolatti, R ;
Lodez, IF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) :317-329