FINITE GROUPS WITH FEW VANISHING ELEMENTS

被引:0
作者
Zhang, Jinshan [1 ]
Shen, Zhencai [2 ]
Shi, Jiangtao [3 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[3] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
关键词
Finite groups; characters; vanishing elements; CONJUGACY CLASSES; IRREDUCIBLE CHARACTER; ZEROS; NUMBER;
D O I
10.3336/gm.49.1.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group, and Irr(G) the set of irreducible complex characters of G. We say that an element g is an element of G is a vanishing element of G if there exists chi in Irr(G) such that chi(g) = 0. Let Van(G) denote the set of vanishing elements of G, that is, Van(G) = {g is an element of G vertical bar chi(g) = 0 for some chi is an element of Irr(G)}. In this paper, we investigate the finite groups G with the following property: Van(G) contains at most four conjugacy classes of G.
引用
收藏
页码:83 / 103
页数:21
相关论文
共 20 条
[1]   Finite groups whose irreducible characters vanish only on p-elements [J].
Bubboloni, Daniela ;
Dolfi, Silvio ;
Spiga, Pablo .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (03) :370-376
[2]  
Conway J. H., 1985, ATLAS of Finite Groups
[3]   On the vanishing prime graph of solvable groups [J].
Dolfi, Silvio ;
Pacifici, Emanuele ;
Sanus, Lucia ;
Spiga, Pablo .
JOURNAL OF GROUP THEORY, 2010, 13 (02) :189-206
[4]   On the orders of zeros of irreducible characters [J].
Dolfi, Silvio ;
Pacifici, Emanuele ;
Sanus, Lucia ;
Spiga, Pablo .
JOURNAL OF ALGEBRA, 2009, 321 (01) :345-352
[5]   ON FINITE SIMPLE GROUPS OF ORDER DIVISIBLE BY 3 PRIMES ONLY [J].
HERZOG, M .
JOURNAL OF ALGEBRA, 1968, 10 (03) :383-&
[6]  
Huppert B., 1998, Character Theory of Finite Groups
[7]  
Huppert B., 1967, Endliche Gruppen I
[8]  
Isaacs I. M., 2006, CHARACTER THEORY FIN
[9]   Finite group elements where no irreducible character vanishes [J].
Isaacs, IM ;
Navarro, G ;
Wolf, TR .
JOURNAL OF ALGEBRA, 1999, 222 (02) :413-423
[10]  
JAMES G, 1993, REPRESENTATIONS CHAR