Displacement field estimation from OCT images utilizing speckle information with applications in quantitative elastography

被引:7
作者
Sherina, Ekaterina [1 ]
Krainz, Lisa [2 ]
Hubmer, Simon [3 ]
Drexler, Wolfgang [2 ]
Scherzer, Otmar [1 ,3 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Wahringer Gurtel 18-20, A-1090 Vienna, Austria
[3] Johann Radon Inst Linz, Altenbergerstr 69, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
displacement field estimation; optical coherence tomography; optical flow estimation; speckle tracking; quantitative elastography; PARAMETER CHOICE RULES; OPTICAL-FLOW; CONVERGENCE ANALYSIS; DEFORMATION; STRAIN;
D O I
10.1088/1361-6420/abaf65
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of estimating the internal displacement field of an object which is being subjected to a deformation, from optical coherence tomography images before and after compression. For the estimation of the internal displacement field we propose a novel algorithm, which utilizes particular speckle information to enhance the quality of the motion estimation. We present numerical results based on both simulated and experimental data in order to demonstrate the usefulness of our approach, in particular when applied for quantitative elastography, when the material parameters are estimated in a second step based on the internal displacement field.
引用
收藏
页数:27
相关论文
共 49 条
[1]   Spectroscopic optical coherence elastography [J].
Adie, Steven G. ;
Liang, Xing ;
Kennedy, Brendan F. ;
John, Renu ;
Sampson, David D. ;
Boppart, Stephen A. .
OPTICS EXPRESS, 2010, 18 (25) :25519-25534
[2]  
Alnaes M., 2015, Archive of Numerical Software, V3, DOI DOI 10.11588/ANS.2015.100.20553
[3]  
[Anonymous], 2006, Mathematical Models for Registration and Applications to Medical Imaging, DOI DOI 10.1007/978-3-540-34767-55
[4]  
[Anonymous], 1996, Mathematics and its Applications
[5]  
[Anonymous], 2009, IEEE C COMP VIS PATT
[6]  
[Anonymous], 2011, DIRECT METHODS THEOR
[7]   Mathematical study of the relaxed optical flow problem in the space BV (Ω) [J].
Aubert, G ;
Kornprobst, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (06) :1282-1308
[8]   Computing optical flow via variational techniques [J].
Aubert, G ;
Deriche, R ;
Kornprobst, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) :156-182
[9]  
Aubert G, 2006, MATH PROBLEMIMAGE, V147
[10]   A Database and Evaluation Methodology for Optical Flow [J].
Baker, Simon ;
Scharstein, Daniel ;
Lewis, J. P. ;
Roth, Stefan ;
Black, Michael J. ;
Szeliski, Richard .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 92 (01) :1-31