Understanding the mechanism of radical reactions in 1-hexene pyrolysis

被引:13
作者
Zhao, Yingxian [1 ]
Zhang, Shengjian [1 ]
Li, Da [1 ]
机构
[1] Zhejiang Univ, Ningbo Inst Technol, Ningbo 315100, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
1-Hexene; Pyrolysis; Radical reactions; Mechanism; Kinetics; Selectivity; BOND-DISSOCIATION ENERGIES; THERMAL-CRACKING; N-HEPTANE; KINETICS; HYDROCARBONS; 2-METHYLPENTANE; OXIDATION; MIXTURES; PROPANE; CARBON;
D O I
10.1016/j.cherd.2013.09.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The pyrolysis of 1-hexene was investigated at 873,923 and 973 K, and interpreted in a chain mechanism of free radical reactions. The experimental data fit the reaction kinetic model adequately. The rate constant of 1-hexene overall conversion increases from 0.0312 to 0.116 to 0.453 s(-1) with increasing temperature from 873 to 923-973 K, leading to the apparent activation energy of 188.7 +/- 1.0 kJ mol(-1). Primary products consist of C-1-C-3 paraffins, C-2-C-4 olefins, butadiene, cyclopentane, cyclopentene, coke and hydrogen. The quantitative analysis of product selectivity shows that various products are formed through different elementary reactions with varying reaction path probability (RPP). Rising temperature promotes homolysis of feed molecule (chain initiation), recombination of radicals (chain termination), and coke formation. The average reaction chain length (KCL) decreases from 5.86 to 5.19 with increasing temperature from 873 to 973K. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 27 条
[1]   KINETICS AND MECHANISM OF THE THERMAL-CRACKING OF N-HEPTANE [J].
ARIBIKE, DS ;
SUSU, AA .
THERMOCHIMICA ACTA, 1988, 127 :247-258
[2]   Bond dissociation energies of organic molecules [J].
Blanksby, SJ ;
Ellison, GB .
ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (04) :255-263
[3]   Modeling of hydrocarbons pyrolysis at low temperature.: Automatic generation of free radicals mechanisms [J].
Bounaceur, R ;
Warth, V ;
Marquaire, PM ;
Scacchi, G ;
Dominé, F ;
Dessort, D ;
Pradier, B ;
Brevert, O .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2002, 64 (01) :103-122
[4]   KINETICS OF HEXANE PYROLYSIS AT VERY HIGH-PRESSURES .2. COMPUTER MODELING [J].
DOMINE, F ;
MARQUAIRE, PM ;
MULLER, C ;
COME, GM .
ENERGY & FUELS, 1990, 4 (01) :2-10
[5]   Mechanism based lumping of pyrolysis reactions: Lumping by reactive intermediates [J].
Fake, DM ;
Nigam, A ;
Klein, MT .
APPLIED CATALYSIS A-GENERAL, 1997, 160 (01) :191-221
[6]   Measurement of select radical processes in hydrocarbon pyrolysis [J].
Franz, JA ;
Camaioni, DM ;
Autrey, T ;
Linehan, JC ;
Alnajjar, MS .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2000, 54 (1-2) :37-64
[7]  
Gray M.R., 2002, FUEL, V16, P207
[8]   Pyrolysis of propane under vacuum carburizing conditions: An experimental and modeling study [J].
Khan, R. U. ;
Bajohr, S. ;
Buchholz, D. ;
Reimert, R. ;
Minh, H. D. ;
Norinaga, K. ;
Janardhanan, V. M. ;
Tischer, S. ;
Deutschmann, O. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2008, 81 (02) :148-156
[9]   Shock Tube and Theory Investigation of Cyclohexane and 1-Hexene Decomposition [J].
Kiefer, J. H. ;
Gupte, K. S. ;
Harding, L. B. ;
Klippenstein, S. J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (48) :13570-13583
[10]   DETAILED CHEMICAL-KINETICS STUDY OF THE ROLE OF PRESSURE IN BUTANE PYROLYSIS [J].
MALLINSON, RG ;
BRAUN, RL ;
WESTBROOK, CK ;
BURNHAM, AK .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1992, 31 (01) :37-45