Chaotic observer-based synchronization under information constraints

被引:50
作者
Fradkov, Alexander L.
Andrievsky, Boris
Evans, Robin J.
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Univ Melbourne, Natl ICT Australia, Melbourne, Vic 3010, Australia
[3] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 06期
关键词
D O I
10.1103/PhysRevE.73.066209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Limitations of observer-based synchronization systems under information constraints (limited information capacity of the coupling channel) are evaluated. We give theoretical analysis for multidimensional drive-response systems represented in the Lurie form (linear part plus nonlinearity depending only on measurable outputs). It is shown that the upper bound of the limit synchronization error (LSE) is proportional to the upper bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the maximum rate of the coupling signal and inversely proportional to the information transmission rate (channel capacity). Optimality of the binary coding for coders with one-step memory is established. The results are applied to synchronization of two chaotic Chua systems coupled via a channel with limited capacity.
引用
收藏
页数:8
相关论文
共 49 条
[1]  
AFRAIMOVICH V, 1987, RADIOPHYS QUANT EL, V29, P795
[2]   Synchronization in lattices of coupled oscillators [J].
Afraimovich, VS ;
Chow, SN ;
Hale, JK .
PHYSICA D, 1997, 103 (1-4) :442-451
[3]   Synchronization in lattices of coupled oscillators with Neumann/periodic boundary conditions [J].
Afraimovich, VS ;
Lin, WW .
DYNAMICS AND STABILITY OF SYSTEMS, 1998, 13 (03) :237-264
[4]  
[Anonymous], CYBERNETICAL PHYS CO
[5]   Chaotic channel [J].
Baptista, MS ;
Kurths, J .
PHYSICAL REVIEW E, 2005, 72 (04)
[6]   Endcoding complexity versus minimum distance [J].
Bazzi, LMJ ;
Mitter, SK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) :2103-2112
[7]   Persistent clusters in lattices of coupled nonidentical chaotic systems [J].
Belykh, I ;
Belykh, V ;
Nevidin, K ;
Hasler, M .
CHAOS, 2003, 13 (01) :165-178
[8]   Connection graph stability method for synchronized coupled chaotic systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :159-187
[9]   On self-synchronization and controlled synchronization [J].
Blekhman, II ;
Fradkov, AL ;
Nijmeijer, H ;
Pogromsky, AY .
SYSTEMS & CONTROL LETTERS, 1997, 31 (05) :299-305
[10]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101