Non-existence of point-transitive 2-(106,6,1) designs

被引:0
作者
Guan, Haiyan [1 ]
Zhou, Shenglin [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
linear space; design; point-transitive; AUTOMORPHISMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a linear space with 106 points, with lines of size 6, and let G be an automorphism group of S. We prove that G cannot be point-transitive. In other words, there exists no point-transitive 2-(106, 6, 1) designs.
引用
收藏
页数:11
相关论文
共 12 条
[1]   ON ISOMORPHISMS OF 2 METACYCLIC GROUPS [J].
BASMAJI, BG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (01) :175-&
[2]  
Beth Thomas., 1985, Design theory
[3]   BLOCK TRANSITIVE AUTOMORPHISM-GROUPS OF 2-(V,K,1) BLOCK-DESIGNS [J].
CAMINA, A ;
SIEMONS, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 51 (02) :268-276
[4]   Alternating groups acting on finite linear spaces [J].
Camina, AR ;
Neumann, PM ;
Praeger, CE .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 :29-53
[5]   THE GROUP OF AUTOMORPHISMS OF A TRANSITIVE 2-(91,6,1) DESIGN [J].
CAMINA, AR ;
DIMARTINO, I .
GEOMETRIAE DEDICATA, 1989, 31 (02) :151-164
[6]  
Colbourn C.J., 2006, Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications
[7]  
Colbourn CJ, 1981, ABSTR AM MATH SOC, V2, P463
[8]  
COLBOURN CJ, 1980, UTILITAS MATHEMATICA, V17, P127
[9]  
Hupper B, 1982, ENDLICHE GRUPPEN
[10]   CYCLIC 2-(91, 6, 1) DESIGNS WITH MULTIPLIER AUTOMORPHISMS [J].
JANKO, Z ;
TONCHEV, VD .
DISCRETE MATHEMATICS, 1991, 97 (1-3) :265-268