REPRESENTATIONS OF CUNTZ ALGEBRAS ASSOCIATED TO RANDOM WALKS ON GRAPHS

被引:2
作者
Christoffersen, Nicholas J. [1 ]
Dutkay, Dorin Ervin [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Univ Cent Florida, Dept Math, 4000 Cent Florida Blvd,POB 161364, Orlando, FL 32816 USA
关键词
Cuntz algebras; random walks; ISOMETRIC DILATIONS; FOURIER-SERIES; WAVELETS; FRACTALS; ENDOMORPHISMS; SUBSPACES; FRAMES; STATES;
D O I
10.7900/jot.2020dec07.2326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the harmonic analysis of selfaffine measures, we introduce a class of representations of the Cuntz algebra associated to random walks on graphs. The representations are constructed using the dilation theory of row coisometries. We study these representations, their commutant and the intertwining operators.
引用
收藏
页码:141 / 172
页数:32
相关论文
共 39 条
[1]   Branching laws for endomorphisms of fermions and the Cuntz algebra O2 [J].
Abe, Mitsuo ;
Kawamura, Katsunori .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
[2]  
Alpay D., 2013, MULTISCALE SIGNAL AN, P161
[3]   A new realization of rational functions, with applications to linear combination interpolation, the Cuntz relations and kernel decompositions [J].
Alpay, Daniel ;
Jorgensen, Palle ;
Lewkowicz, Izchak ;
Volok, Dan .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) :42-54
[4]   Compactly supported wavelets and representations of the Cuntz relations [J].
Bratteli, O ;
Evans, DE ;
Jorgensen, PET .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :166-196
[5]  
Bratteli O, 2000, J OPERAT THEOR, V43, P97
[6]  
Bratteli Ola., 2002, AMS/IP Stud. Adv. Math, V25, P35
[7]   Slightly larger than a graph C*-algebra [J].
Burgstaller, B .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 144 (1) :1-14
[8]   SIMPLE CSTAR-ALGEBRAS GENERATED BY ISOMETRIES [J].
CUNTZ, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 57 (02) :173-185
[9]  
DAVIDSON K.R., 1996, FIELDS I MONOGR, V6
[10]   Isometric dilations of non-commuting finite rank n-tuples [J].
Davidson, KR ;
Kribs, DW ;
Shpigel, ME .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (03) :506-545