Synergic Reaction Kinetics over Adjacent Ruthenium Sites for Superb Hydrogen Generation in Alkaline Media

被引:210
作者
He, Qun [1 ]
Zhou, Yuzhu [1 ]
Shou, Hongwei [1 ,2 ]
Wang, Xinyu [2 ]
Zhang, Pengjun [1 ]
Xu, Wenjie [1 ]
Qiao, Sicong [1 ]
Wu, Chuanqiang [3 ,4 ]
Liu, Hengjie [1 ]
Liu, Daobin [1 ]
Chen, Shuangming [1 ]
Long, Ran [1 ,2 ]
Qi, Zeming [1 ]
Wu, Xiaojun [2 ]
Song, Li [1 ]
机构
[1] Univ Sci & Technol China, CAS Ctr Excellence Nanosci, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[2] Univ Sci & Technol China, Sch Chem & Mat Sci, Collaborat Innovat Ctr Chem Energy Mat iChEM, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Anhui Univ, Inst Phys Sci, Hefei 230601, Anhui, Peoples R China
[4] Anhui Univ, Inst Informat Technol, Hefei 230601, Anhui, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划;
关键词
alkaline hydrogen evolution; density functional theory; in situ characterizations; kinetics mechanism; synergistic effect; EVOLUTION REACTION; PH; NANOPARTICLES; CATALYSTS; EFFICIENT; ENERGY; CO;
D O I
10.1002/adma.202110604
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ruthenium (Ru)-based electrocatalysts as platinum (Pt) alternatives in catalyzing hydrogen evolution reaction (HER) are promising. However, achieving efficient reaction processes on Ru catalysts is still a challenge, especially in alkaline media. Here, the well-dispersed Ru nanoparticles with adjacent Ru single atoms on carbon substrate (Ru-1,Ru-n-NC) is demonstrated to be a superb electrocatalyst for alkaline HER. The obtained Ru-1,Ru-n-NC exhibits ultralow overpotential (14.8 mV) and high turnover frequency (1.25 H-2 s(-1) at -0.025 V vs reversible hydrogen electrode), much better than the commercial 40 wt.% Pt/C. The analyses reveal that Ru nanoparticles and single sites can promote each other to deliver electrons to the carbon substrate. Eventually, the electronic regulations bring accelerated water dissociation and reduced energy barriers of hydroxide/hydrogen desorption on adjacent Ru sites, then an optimized reaction kinetics for Ru-1,Ru-n-NC is obtained to achieve superb hydrogen generation in alkaline media. This work provides a new insight into the catalyst design in simultaneous optimizations of the elementary steps to obtain ideal HER performance in alkaline media.
引用
收藏
页数:9
相关论文
共 44 条
  • [1] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [2] Ruthenium-Based Single-Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution
    Chen, Cui-Hong
    Wu, Deyao
    Li, Zhe
    Zhang, Rui
    Kuai, Chun-Guang
    Zhao, Xue-Ru
    Dong, Cun-Ku
    Qiao, Shi-Zhang
    Liu, Hui
    Du, Xi-Wen
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (20)
  • [3] Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites
    Chen, Guangbo
    Wang, Tao
    Zhang, Jian
    Liu, Pan
    Sun, Hanjun
    Zhuang, Xiaodong
    Chen, Mingwei
    Feng, Xinliang
    [J]. ADVANCED MATERIALS, 2018, 30 (10)
  • [4] Promoting Subordinate, Efficient Ruthenium Sites with Interstitial Silicon for Pt-Like Electrocatalytic Activity
    Chen, Hui
    Ai, Xuan
    Liu, Wang
    Xie, Zhoubing
    Feng, Weiqiang
    Chen, Wei
    Zou, Xiaoxin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (33) : 11409 - 11413
  • [5] Improving alkaline hydrogen evolution reaction kinetics on molybdenum carbide: Introducing Ru dopant
    Chen, Jiadong
    Chen, Chunhong
    Chen, Yuzhuo
    Wang, Haiyan
    Mao, Shanjun
    Wang, Yong
    [J]. JOURNAL OF CATALYSIS, 2020, 392 : 313 - 321
  • [6] Tailoring the d-Band Centers Enables Co4N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis
    Chen, Zhiyan
    Song, Yao
    Cai, Jinyan
    Zheng, Xusheng
    Han, Dongdong
    Wu, Yishang
    Zang, Yipeng
    Niu, Shuwen
    Liu, Yun
    Zhu, Junfa
    Liu, Xiaojing
    Wang, Gongming
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (18) : 5076 - 5080
  • [7] Ruthenium Nanoparticles for Catalytic Water Splitting
    Creus, Jordi
    De Tovar, Jonathan
    Romero, Nuria
    Garcia-Anton, Jordi
    Philippot, Karine
    Bofill, Roger
    Sala, Xavier
    [J]. CHEMSUSCHEM, 2019, 12 (12) : 2493 - 2514
  • [8] Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution
    Dang, Yanliu
    Wu, Tianli
    Tan, Haiyan
    Wang, Jinlong
    Cui, Can
    Kerns, Peter
    Zhao, Wen
    Posada, Luisa
    Wen, Liaoyong
    Suib, Steven L.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (10) : 5433 - 5443
  • [9] Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution
    Han, Sumei
    Yun, Qinbai
    Tu, Siyang
    Zhu, Lijie
    Cao, Wenbin
    Lu, Qipeng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (43) : 24691 - 24714
  • [10] Achieving Efficient Alkaline Hydrogen Evolution Reaction over a Ni5P4 Catalyst Incorporating Single-Atomic Ru Sites
    He, Qun
    Tian, Dong
    Jiang, Hongliang
    Cao, Dengfeng
    Wei, Shiqiang
    Liu, Daobin
    Song, Pin
    Lin, Yue
    Song, Li
    [J]. ADVANCED MATERIALS, 2020, 32 (11)