In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range

被引:82
作者
Ding, Junwei [1 ,2 ]
Gao, Hongge [1 ,2 ]
Zhao, Kang [3 ]
Zheng, Huaiyang [1 ,2 ]
Zhang, Hang [1 ,2 ]
Han, Lifeng [1 ,2 ]
Wang, Shiwen [1 ,2 ]
Wu, Shide [1 ,2 ]
Fang, Shaoming [1 ,2 ]
Cheng, Fangyi [3 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Prov Key Lab Surface & Interface Sci, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou 450002, Peoples R China
[3] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem,Collaborat Innovat Ct, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
In-situ electrochemical conversion; Vanadium dioxide; Zinc ion batteries; High potential; Storage mechanism; BATTERY;
D O I
10.1016/j.jpowsour.2020.229369
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
VO2(B) is a promising cathode candidate for aqueous zinc ion batteries owing to its special tunnel lattice structure. However, the zinc storage mechanisms of VO2(B) are elusive over large voltage range, especially at the high potential. Via combined structure and composition characterizations such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy as well as electrochemical tests, it is demonstrated that VO2(B) goes through a conversion reaction when the potential approaching about 1.5 V during the first charging process. The obtained conversion product Zn-3(OH)(2)V2O7 center dot 2H(2)O shows high zinc ion storage capacity of 330 mA h g(-1) at 0.1 A g(-1), fast zinc ion diffusion kinetics, and high rate performances (130 mA h g(-1) at 10 A g(-1)). This work provides a novel strategy for the rational design of electrode materials with large voltage range, especially for aqueous multi-valence ion batteries.
引用
收藏
页数:7
相关论文
共 57 条
[41]   Recent Advances in Zn-Ion Batteries [J].
Song, Ming ;
Tan, Hua ;
Chao, Dongliang ;
Fan, Hong Jin .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (41)
[42]   Issues and opportunities facing aqueous zinc-ion batteries [J].
Tang, Boya ;
Shan, Lutong ;
Liang, Shuquan ;
Zhou, Jiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (11) :3288-3304
[43]   An Aqueous Zinc-Ion Battery Based on Copper Hexacyanoferrate [J].
Trocoli, Rafael ;
La Mantia, Fabio .
CHEMSUSCHEM, 2015, 8 (03) :481-485
[44]   Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries [J].
Wan, Fang ;
Niu, Zhiqiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (46) :16358-16367
[45]   A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life [J].
Wang, Fei ;
Hu, Enyuan ;
Sun, Wei ;
Gao, Tao ;
Ji, Xiao ;
Fan, Xiulin ;
Han, Fudong ;
Yang, Xiao-Qing ;
Xu, Kang ;
Wang, Chunsheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3168-3175
[46]   Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries [J].
Wang, Pinji ;
Shi, Xiaodong ;
Wu, Zhuoxi ;
Guo, Shan ;
Zhou, Jiang ;
Liang, Shuquan .
CARBON ENERGY, 2020, 2 (02) :294-301
[47]   An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide [J].
Wei, Tongye ;
Li, Qian ;
Yang, Gongzheng ;
Wang, Chengxin .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) :8006-8012
[48]   Graphene Scroll-Coated α-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery [J].
Wu, Buke ;
Zhang, Guobin ;
Yan, Mengyu ;
Xiong, Tengfei ;
He, Pan ;
He, Liang ;
Xu, Xu ;
Mai, Liqiang .
SMALL, 2018, 14 (13)
[49]   Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode [J].
Xia, Chuan ;
Guo, Jing ;
Li, Peng ;
Zhang, Xixiang ;
Alshareef, Husam N. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (15) :3943-3948
[50]   Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery [J].
Xu, Chengjun ;
Li, Baohua ;
Du, Hongda ;
Kang, Feiyu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (04) :933-935