In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range

被引:82
作者
Ding, Junwei [1 ,2 ]
Gao, Hongge [1 ,2 ]
Zhao, Kang [3 ]
Zheng, Huaiyang [1 ,2 ]
Zhang, Hang [1 ,2 ]
Han, Lifeng [1 ,2 ]
Wang, Shiwen [1 ,2 ]
Wu, Shide [1 ,2 ]
Fang, Shaoming [1 ,2 ]
Cheng, Fangyi [3 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Prov Key Lab Surface & Interface Sci, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Zhengzhou 450002, Peoples R China
[3] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem,Collaborat Innovat Ct, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
In-situ electrochemical conversion; Vanadium dioxide; Zinc ion batteries; High potential; Storage mechanism; BATTERY;
D O I
10.1016/j.jpowsour.2020.229369
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
VO2(B) is a promising cathode candidate for aqueous zinc ion batteries owing to its special tunnel lattice structure. However, the zinc storage mechanisms of VO2(B) are elusive over large voltage range, especially at the high potential. Via combined structure and composition characterizations such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy as well as electrochemical tests, it is demonstrated that VO2(B) goes through a conversion reaction when the potential approaching about 1.5 V during the first charging process. The obtained conversion product Zn-3(OH)(2)V2O7 center dot 2H(2)O shows high zinc ion storage capacity of 330 mA h g(-1) at 0.1 A g(-1), fast zinc ion diffusion kinetics, and high rate performances (130 mA h g(-1) at 10 A g(-1)). This work provides a novel strategy for the rational design of electrode materials with large voltage range, especially for aqueous multi-valence ion batteries.
引用
收藏
页数:7
相关论文
共 57 条
[1]   Progress in Aqueous Rechargeable Sodium-Ion Batteries [J].
Bin, Duan ;
Wang, Fei ;
Tamirat, Andebet Gedamu ;
Suo, Liumin ;
Wang, Yonggang ;
Wang, Chunsheng ;
Xia, Yongyao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[2]   Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges [J].
Canepa, Pieremanuele ;
Gautam, Gopalakrishnan Sai ;
Hannah, Daniel C. ;
Malik, Rahul ;
Liu, Miao ;
Gallagher, Kevin G. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
CHEMICAL REVIEWS, 2017, 117 (05) :4287-4341
[3]   V2O5@CNTs as cathode of aqueous zinc ion battery with high rate and high stability [J].
Chen, Hongzhe ;
Qin, Haigang ;
Chen, Linlin ;
Wu, Jian ;
Yang, Zhanhong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
[4]  
Chen L., 2020, NAT COMMUN, V11
[5]   Ultrastable and High-Performance Zn/VO2 Battery Based on a Reversible Single-Phase Reaction (vol 31, pg 699, 2019) [J].
Chen, Lineng ;
Ruan, Yushan ;
Zhang, Guobin ;
Wei, Qiulong ;
Jiang, Yalong ;
Xiong, Tengfei ;
He, Pan ;
Yang, Wei ;
Yan, Mengyu ;
An, Qinyou ;
Mai, Liqiang .
CHEMISTRY OF MATERIALS, 2019, 31 (14) :5342-5342
[6]   VO2(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries [J].
Cui, Fuhan ;
Zhao, Jun ;
Zhang, Dongxu ;
Fang, Yongzheng ;
Hu, Fang ;
Zhu, Kai .
CHEMICAL ENGINEERING JOURNAL, 2020, 390
[7]   Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries [J].
Ding, Junwei ;
Du, Zhiguo ;
Li, Bin ;
Wang, Lizhen ;
Wang, Shiwen ;
Gong, Yongji ;
Yang, Shubin .
ADVANCED MATERIALS, 2019, 31 (44)
[8]   High-Energy Aqueous Lithium Batteries [J].
Eftekhari, Ali .
ADVANCED ENERGY MATERIALS, 2018, 8 (24)
[9]   Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High-Energy-Density and Durable Aqueous Zinc-Ion Battery [J].
Fang, Guozhao ;
Zhu, Chuyu ;
Chen, Minghui ;
Zhou, Jiang ;
Tang, Boya ;
Cao, Xinxin ;
Zheng, Xusheng ;
Pan, Anqiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (15)
[10]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501