If D is a digraph with n vertices then the energy of D is defined as epsilon(D) = Sigma(n)(k=1) vertical bar Re(z(k))vertical bar, where Re (z(1)), ..., Re(z(n)) are the real parts of the eigenvalues z(1), ..., z(n) of D. In this paper we solve a problem proposed in Khan et al. (2015), we find the maximal value of the energy over the set of all bicyclic digraphs B-n with n vertices. (C) 2016 Elsevier Inc. All rights reserved.
机构:
Anhui Univ, Sch Math Sci, Hefei, Peoples R China
Air Univ, Dept Comp Sci, Aerosp & Aviat Campus, Kamra, PakistanAnhui Univ, Sch Math Sci, Hefei, Peoples R China
Khan, Mehtab
Khan, Khushal
论文数: 0引用数: 0
h-index: 0
机构:
Bacha Khan Univ, Dept Math & Stat, Charsadda, PakistanAnhui Univ, Sch Math Sci, Hefei, Peoples R China
Khan, Khushal
Ahmad, Sayed Ishfaq
论文数: 0引用数: 0
h-index: 0
机构:
Bacha Khan Univ, Dept Math & Stat, Charsadda, PakistanAnhui Univ, Sch Math Sci, Hefei, Peoples R China
机构:
Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R ChinaZhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
Tian, Gui-Xian
Cui, Shu-Yu
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R ChinaZhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China