Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition

被引:113
作者
Garlow, Joseph A. [1 ,2 ]
Barrett, Lawrence K. [3 ]
Wu, Lijun [1 ]
Kisslinger, Kim [4 ]
Zhu, Yimei [1 ,2 ]
Pulecio, Javier F. [1 ]
机构
[1] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
[2] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA
[3] Boston Univ, Div Mat Sci & Engn, Boston, MA 02215 USA
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
RAMAN-SPECTROSCOPY; BILAYER GRAPHENE; POLYCRYSTALLINE NI; CARBON NANOTUBES; HIGH-QUALITY; FILMS; GRAPHITIZATION; PRECIPITATION; GRAPHITE;
D O I
10.1038/srep19804
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800-1100 degrees C, we report an increase in the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm(-1) to 2300 cm(-1), along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100 degrees C.
引用
收藏
页数:11
相关论文
共 63 条
  • [1] GRAPHITIZATION OF ALPHA-SILICON CARBIDE
    BADAMI, DV
    [J]. NATURE, 1962, 193 (4815) : 569 - &
  • [2] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
  • [3] On the mechanisms of precipitation of graphene on nickel thin films
    Baraton, L.
    He, Z. B.
    Lee, C. S.
    Cojocaru, C. S.
    Chatelet, M.
    Maurice, J. -L.
    Lee, Y. H.
    Pribat, D.
    [J]. EPL, 2011, 96 (04)
  • [4] General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy
    Cançado, LG
    Takai, K
    Enoki, T
    Endo, M
    Kim, YA
    Mizusaki, H
    Jorio, A
    Coelho, LN
    Magalhaes-Paniago, R
    Pimenta, MA
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [5] Resonance effects on the Raman spectra of graphene superlattices
    Carozo, V.
    Almeida, C. M.
    Fragneaud, B.
    Bede, P. M.
    Moutinho, M. V. O.
    Ribeiro-Soares, J.
    Andrade, N. F.
    Souza Filho, A. G.
    Matos, M. J. S.
    Wang, B.
    Terrones, M.
    Capaz, Rodrigo B.
    Jorio, A.
    Achete, C. A.
    Cancado, L. G.
    [J]. PHYSICAL REVIEW B, 2013, 88 (08)
  • [6] Raman Signature of Graphene Superlattices
    Carozo, Victor
    Almeida, Clara M.
    Ferreira, Erlon H. M.
    Cancado, Luiz Gustavo
    Achete, Carlos Alberto
    Jorio, Ado
    [J]. NANO LETTERS, 2011, 11 (11) : 4527 - 4534
  • [7] Material contrast in SEM: Fermi energy and work function effects
    Cazaux, Jacques
    [J]. ULTRAMICROSCOPY, 2010, 110 (03) : 242 - 253
  • [8] Charged-impurity scattering in graphene
    Chen, J. -H.
    Jang, C.
    Adam, S.
    Fuhrer, M. S.
    Williams, E. D.
    Ishigami, M.
    [J]. NATURE PHYSICS, 2008, 4 (05) : 377 - 381
  • [9] Raman Characterization of ABA- and ABC-Stacked Trilayer Graphene
    Cong, Chunxiao
    Yu, Ting
    Sato, Kentaro
    Shang, Jingzhi
    Saito, Riichiro
    Dresselhaus, Gene F.
    Dresselhaus, Mildred S.
    [J]. ACS NANO, 2011, 5 (11) : 8760 - 8768
  • [10] Second-Order Overtone and Combination Raman Modes of Graphene Layers in the Range of 1690-2150 cm-1
    Cong, Chunxiao
    Yu, Ting
    Saito, Riichiro
    Dresselhaus, Gene F.
    Dresselhaus, Mildred S.
    [J]. ACS NANO, 2011, 5 (03) : 1600 - 1605