Controllable fusion of human brain organoids using acoustofluidics

被引:67
作者
Ao, Zheng [1 ]
Cai, Hongwei [1 ]
Wu, Zhuhao [1 ]
Ott, Jonathan [1 ]
Wang, Huiliang [2 ]
Mackie, Ken [3 ]
Guo, Feng [1 ]
机构
[1] Indiana Univ, Dept Intelligent Syst Engn, Bloomington, IN 47405 USA
[2] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[3] Indiana Univ, Dept Psychol & Brain Sci, Gill Ctr Biomol Sci, Bloomington, IN 47405 USA
关键词
Excitatory neurons - High heterogeneity - Neural progenitor cells - Pathological process - Proof of concept - Reproducibilities - Spatial arrangements - Tyrosine hydroxylase;
D O I
10.1039/d0lc01141j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The fusion of human organoids holds promising potential in modeling physiological and pathological processes of tissue genesis and organogenesis. However, current fused organoid models face challenges of high heterogeneity and variable reproducibility, which may stem from the random fusion of heterogeneous organoids. Thus, we developed a simple and versatile acoustofluidic method to improve the standardization of fused organoid models via a controllable spatial arrangement of organoids. By regulating dynamic acoustic fields within a hexagonal acoustofluidic device, we can rotate, transport, and fuse one organoid with another in a contact-free, label-free, and minimal-impact manner. As a proof-of-concept to model the development of the human midbrain-to-forebrain mesocortical pathway, we acoustically fused human forebrain organoids (hFOs) and human midbrain organoids (hMOs) with the controllable alignment of neuroepithelial buds. We found that post-assembly, hMO can successfully project tyrosine hydroxylase neurons towards hFO, accompanied by an increase of firing rates and synchrony of excitatory neurons. Moreover, we found that our controllable fusion method can regulate neuron projection (e.g., range, length, and density), projection maturation (e.g., higher firing rate and synchrony), and neural progenitor cell (NPC) division in the assembloids via the initial spatial control. Thus, our acoustofluidic method may serve as a label-free, contact-free, and highly biocompatible tool to effectively assemble organoids and facilitate the standardization and robustness of organoid-based disease models and tissue engineering.
引用
收藏
页码:688 / 699
页数:12
相关论文
共 76 条
[1]   Rotational manipulation of single cells and organisms using acoustic waves [J].
Ahmed, Daniel ;
Ozcelik, Adem ;
Bojanala, Nagagireesh ;
Nama, Nitesh ;
Upadhyay, Awani ;
Chen, Yuchao ;
Hanna-Rose, Wendy ;
Huang, Tony Jun .
NATURE COMMUNICATIONS, 2016, 7
[2]   One-Stop Microfluidic Assembly of Human Brain Organoids To Model Prenatal Cannabis Exposure [J].
Ao, Zheng ;
Cai, Hongwei ;
Havert, Daniel J. ;
Wu, Zhuhao ;
Gong, Zhiyi ;
Beggs, John M. ;
Mackie, Ken ;
Guo, Feng .
ANALYTICAL CHEMISTRY, 2020, 92 (06) :4630-4638
[3]  
Ayano G., 2016, J MENTAL DISORDERS T, DOI [DOI 10.4172/2471-271X.1000120, 10.4172/2471-271x.1000120]
[4]   Fused cerebral organoids model interactions between brain regions [J].
Bagley, Joshua A. ;
Reumann, Daniel ;
Bian, Shan ;
Levi-Strauss, Julie ;
Knoblich, Juergen A. .
NATURE METHODS, 2017, 14 (07) :743-+
[5]   Assembly of functionally integrated human forebrain spheroids [J].
Birey, Fikri ;
Andersen, Jimena ;
Makinson, Christopher D. ;
Islam, Saiful ;
Wei, Wu ;
Huber, Nina ;
Fan, H. Christina ;
Metzler, Kimberly R. Cordes ;
Panagiotakos, Georgia ;
Thom, Nicholas ;
O'Rourke, Nancy A. ;
Steinmetz, Lars M. ;
Bernstein, Jonathan A. ;
Hallmayer, Joachim ;
Huguenard, John R. ;
Pasca, Sergiu P. .
NATURE, 2017, 545 (7652) :54-+
[6]   High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays [J].
Brandenberg, Nathalie ;
Hoehnel, Sylke ;
Kuttler, Fabien ;
Homicsko, Krisztian ;
Ceroni, Camilla ;
Ringel, Till ;
Gjorevski, Nikolce ;
Schwank, Gerald ;
Coukos, George ;
Turcatti, Gerardo ;
Lutolf, Matthias P. .
NATURE BIOMEDICAL ENGINEERING, 2020, 4 (09) :863-+
[7]   Neuronal Subset-Specific Migration and Axonal Wiring Mechanisms in the Developing Midbrain Dopamine System [J].
Brignani, Sara ;
Pasterkamp, R. J. .
FRONTIERS IN NEUROANATOMY, 2017, 11
[8]   Morphogenesis Guided by 3D Patterning of Growth Factors in Biological Matrices [J].
Broguiere, Nicolas ;
Luchtefeld, Ines ;
Trachsel, Lucca ;
Mazunin, Dmitry ;
Rizzo, Riccardo ;
Bode, Jeffrey W. ;
Lutolf, Matthias P. ;
Zenobi-Wong, Marcy .
ADVANCED MATERIALS, 2020, 32 (25)
[9]   Acoustofluidic assembly of 3D neurospheroids to model Alzheimer's disease [J].
Cai, Hongwei ;
Ao, Zheng ;
Moon, Younghye ;
Wu, Zhuhao ;
Lu, Hui-Chen ;
Kim, Jungsu ;
Guo, Feng ;
Hu, Liya .
ANALYST, 2020, 145 (19) :6243-6253
[10]   Trapping cell spheroids and organoids using digital acoustofluidics [J].
Cai, Hongwei ;
Wu, Zhuhao ;
Ao, Zheng ;
Nunez, Asael ;
Chen, Bin ;
Jiang, Lei ;
Bondesson, Maria ;
Guo, Feng .
BIOFABRICATION, 2020, 12 (03)