Long-time behavior of Navier-Stokes flow on a two-dimensional torus excited by an external sinusoidal force

被引:8
作者
Chen, ZM [1 ]
Price, WG [1 ]
机构
[1] UNIV SOUTHAMPTON,DEPT SHIP SCI,SOUTHAMPTON SO17 1BJ,HANTS,ENGLAND
关键词
Navier-Stokes equations; bifurcations; dynamical systems; HAUSDORFF DIMENSION; GLOBAL ATTRACTORS; EQUATIONS;
D O I
10.1007/BF02180208
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study the Navier-Stokes flow on the two-dimensional torus S-1 x S-1 excited by the external force (k(2) sin ky, 0) and find the long-time behavior for the now starting from some states, where S-1 = [0, 2 pi](mod 2 pi). Especially for the case k = 2, it follows from an analysis and computation that the Navier-Stokes flow with the initial state cos(mx + ny) or sin(mx + ny) will likely evolve through at most one step bifurcation to either a steady-state solution or a time-dependent periodic solution for any Reynolds number and integers m and n.
引用
收藏
页码:301 / 335
页数:35
相关论文
共 21 条
[1]  
Arnold V. I., 1960, Usp. Mat. Nauk, V15, P247
[2]   ATTRACTORS OF PARTIAL-DIFFERENTIAL EVOLUTION-EQUATIONS AND ESTIMATES OF THEIR DIMENSION [J].
BABIN, AV ;
VISHIK, MI .
RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (04) :151-213
[3]   Time dependent periodic Navier-Stokes flows on a two-dimensional torus [J].
Chen, ZM ;
Price, WG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (03) :577-597
[4]   ON THE LARGE TIME GALERKIN APPROXIMATION OF THE NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C ;
TEMAM, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :615-634
[5]   COMMON PERIODIC BEHAVIOR IN LARGER AND LARGER TRUNCATIONS OF THE NAVIER-STOKES EQUATIONS [J].
FRANCESCHINI, V ;
GIBERTI, C ;
NICOLINI, M .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (5-6) :879-896
[6]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224
[7]  
Guckenheimer J., 2013, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, V42, DOI 10.1007/978-1-4612-1140-2
[8]  
IUDOVICH VI, 1965, J MATH MECH, V29, P453
[9]   BIFURCATION COMPUTATIONS ON AN APPROXIMATE INERTIAL MANIFOLD FOR THE 2D NAVIER-STOKES EQUATIONS [J].
JOLLY, MS .
PHYSICA D, 1993, 63 (1-2) :8-20
[10]  
Krasnoselskii A.M., 1964, Topological Methods in the Theory of Nonlinear Integral Equations