GENERALIZED LIE DERIVATIONS OF UNITAL ALGEBRAS WITH IDEMPOTENTS

被引:18
|
作者
Benkovic, Dominik [1 ]
机构
[1] Univ Maribor, FNM, Dept Math & Comp Sci, Maribor 2000, Slovenia
来源
OPERATORS AND MATRICES | 2018年 / 12卷 / 02期
关键词
Generalized Lie n-derivation; Lie n-derivation; derivation; unital algebra; triangular algebra; TRIANGULAR ALGEBRAS; TRIPLE DERIVATIONS; MATRIX ALGEBRAS; N-DERIVATIONS; NEST-ALGEBRAS;
D O I
10.7153/oam-2018-12-23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a unital algebra with a nontrivial idempotent e over a unital commutative ring R. We show that under suitable assumptions every generalized Lie n-derivation F : A -> A is of the form F(x) = lambda x + Delta(x), where lambda is an element of Z(A) and Delta is a Lie n-derivation of A. As an application, we give a description of generalized Lie n -derivations on classical examples of unital algebras with idempotents: triangular algebras, matrix algebras, nest algebras and algebras of all bounded linear operators.
引用
收藏
页码:357 / 367
页数:11
相关论文
共 50 条