Noncommutative two-dimensional gravities

被引:27
作者
Balachandran, A. P. [1 ]
Govindarajan, T. R.
Gupta, Kumar S.
Kurkcuoglu, Seckin
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil
[3] Saha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India
[4] Dublin Inst Adv Studies, Sch Theoret Phys, Dublin 4, Ireland
关键词
D O I
10.1088/0264-9381/23/20/003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give formulations of noncommutative two-dimensional gravities in terms of noncommutative gauge theories. We survey their classical solutions and show that solutions of the corresponding commutative theories continue to be solutions in the noncommutative theories as well. We argue that the existence of 'twisted' diffeomorphisms, recently introduced in Aschieri et al ( 2005 Class. Quantum Grav. 22 3511), is crucial for this conclusion.
引用
收藏
页码:5799 / 5810
页数:12
相关论文
共 22 条
[1]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[2]   Noncommutative geometry and gravity [J].
Aschieri, Paolo ;
Dimitrijevic, Marija ;
Meyer, Frank ;
Wess, Julius .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (06) :1883-1911
[3]   Spin and statistics on the Groenewold-Moyal plane: Pauli-forbidden levels and transitions [J].
Balachandran, A. P. ;
Mangano, G. ;
Pinzul, A. ;
Vaidya, S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (15) :3111-3126
[4]  
Balachandran A.P., UNPUB
[5]   Noncommutative gravity in two dimensions [J].
Cacciatori, S ;
Chamseddine, AH ;
Klemm, D ;
Martucci, L ;
Sabra, WA ;
Zanon, D .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (15) :4029-4042
[6]   EVANESCENT BLACK-HOLES [J].
CALLAN, CG ;
GIDDINGS, SB ;
HARVEY, JA ;
STROMINGER, A .
PHYSICAL REVIEW D, 1992, 45 (04) :R1005-R1009
[7]   GAUGE-INVARIANT FORMULATIONS OF LINEAL GRAVITIES [J].
CANGEMI, D ;
JACKIW, R .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :233-236
[8]  
CHACHIAN M, 1996, INTRO QUANTUM GROUPS
[9]   On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT [J].
Chaichian, M ;
Kulish, PP ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2004, 604 (1-2) :98-102
[10]   GAUGE-THEORY OF TOPOLOGICAL GRAVITY IN 1+1 DIMENSIONS [J].
CHAMSEDDINE, AH ;
WYLER, D .
PHYSICS LETTERS B, 1989, 228 (01) :75-78