Strategies for synthesis of Prussian blue analogues

被引:70
|
作者
Kjeldgaard, Solveig [1 ,2 ]
Dugulan, Iulian [3 ]
Mamakhel, Aref [2 ]
Wagemaker, Marnix [3 ]
Iversen, Bo Brummerstedt [2 ]
Bentien, Anders [1 ]
机构
[1] Aarhus Univ, Dept Engn, Aarhus, Denmark
[2] Aarhus Univ, Dept Chem, Aarhus, Denmark
[3] Delft Univ Technol, Dept Radiat Sci & Technol, Delft, Netherlands
来源
ROYAL SOCIETY OPEN SCIENCE | 2021年 / 8卷 / 01期
关键词
Prussian blue analogues; battery; storage; synthesis; NICKEL HEXACYANOFERRATE; CATHODE MATERIALS; WATER-MOLECULES; ENERGY-DENSITY; OPEN FRAMEWORK; ION; SODIUM; BATTERY; INSERTION; WHITE;
D O I
10.1098/rsos.201779
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a comparison of different common synthetic strategies for preparation of Prussian blue analogues (PBA). PBA are promising as cathode material for a number of different battery types, including K-ion and Na-ion batteries with both aqueous and non-aqueous electrolytes. PBA exhibit a significant degree of structural variation. The structure of the PBA determines the electrochemical performance, and it is, therefore, important to understand how synthesis parameters affect the structure of the obtained product. PBA are often synthesized by co-precipitation of a metal salt and a hexacyanoferrate complex, and parameters such as concentration and oxidation state of the precursors, flow rate, temperature and additional salts can all potentially affect the structure of the product. Here, we report 12 different syntheses and compare the structure of the obtained PBA materials.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments
    Zakaria, Mohamed B.
    Chikyow, Toyohiro
    COORDINATION CHEMISTRY REVIEWS, 2017, 352 : 328 - 345
  • [2] Design and Synthesis of Concentration Gradient Prussian Blue Analogues
    Jeon, SuKyung
    Li, Carissa H.
    Talham, Daniel R.
    CRYSTAL GROWTH & DESIGN, 2021, 21 (02) : 916 - 925
  • [3] Mesostructured Prussian blue analogues
    Roy, Xavier
    Thompson, Laurence K.
    Coombs, Neil
    MacLachlan, Mark J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (03) : 511 - 514
  • [4] Continuous Flow Synthesis of Prussian Blue and Analogues Assisted by AI
    Hof, Sebastian
    Kioumourtzoglou, Stylianos
    Novakova, Jaroslava
    Gorlin, Mikaela
    Sa, Jacinto
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [5] Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors
    Ying, Shuanglu
    Chen, Chen
    Wang, Jiang
    Lu, Chunxiao
    Liu, Tian
    Kong, Yuxuan
    Yi, Fei-Yan
    CHEMPLUSCHEM, 2021, 86 (12): : 1608 - 1622
  • [6] Optimizing Prussian Blue Analogues for Potassium-Ion Batteries: Advanced Strategies
    Hu, Zihao
    Zhang, Bo
    Zhang, Hehe
    Ma, Yanjiao
    BATTERIES & SUPERCAPS, 2025, 8 (03)
  • [7] Octahedral tilting in Prussian blue analogues
    Bostroem, Hanna L. B.
    Brant, William R.
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (37) : 13690 - 13699
  • [8] Octahedral tilting in Prussian blue analogues
    Bostrom, Hanna L. B.
    Brant, William R.
    Phillips, Anthony E.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C131 - C131
  • [9] Prussian Blue Analogues of Reduced Dimensionality
    Gengler, Regis Y. N.
    Toma, Luminita M.
    Pardo, Emilio
    Lloret, Francesc
    Ke, Xiaoxing
    Van Tendeloo, Gustaaf
    Gournis, Dimitrios
    Rudolf, Petra
    SMALL, 2012, 8 (16) : 2532 - 2540
  • [10] Disorder phenomena in Prussian Blue analogues
    Chernyshov, Dmitry
    Bosak, Alexei
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2010, 66 : S72 - S72