Analyticity of the streamlines and of the free surface for periodic equatorial gravity water flows with vorticity

被引:8
作者
Martin, Calin Iulian [1 ]
机构
[1] Univ Wien, Inst Math, A-1090 Vienna, Austria
关键词
General vorticity; Equatorial gravity waves; Regularity of solutions; WAVES; REGULARITY; SYMMETRY; EXISTENCE;
D O I
10.1016/j.nonrwa.2014.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove analyticity of the streamlines beneath the surface and the smoothness of the free surface for geophysical equatorial water flows with a general Holder continuously differentiable underlying vorticity distribution under the assumption of no stagnation points in the flow. Moreover, we prove that the real-analyticity of the vorticity function implies the real-analyticity of the free surface. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 47 条
[1]  
[Anonymous], 1979, GEOPHYS FLUID DYN
[2]  
[Anonymous], 2000, Cambridge Tracts in Mathematics
[3]  
Buffoni B., 2003, Princeton Series in Applied Mathematics
[4]   Recovery of steady periodic wave profiles from pressure measurements at the bed [J].
Clamond, D. ;
Constantin, A. .
JOURNAL OF FLUID MECHANICS, 2013, 714 :463-475
[5]   Symmetry of steady periodic surface water waves with vorticity [J].
Constantin, A ;
Escher, J .
JOURNAL OF FLUID MECHANICS, 2004, 498 :171-181
[6]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[7]   On the modelling of equatorial waves [J].
Constantin, A. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[8]  
Constantin A., 2011, NONLINEAR WATER WAVE
[9]   Symmetry of steady periodic gravity water waves with vorticity [J].
Constantin, Adrian ;
Ehrnstrom, Mats ;
Wahlen, Erik .
DUKE MATHEMATICAL JOURNAL, 2007, 140 (03) :591-603
[10]   The trajectories of particles in Stokes waves [J].
Constantin, Adrian .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :523-535