A Bacterial Strain with a Unique Quadruplet Codon Specifying Non-native Amino Acids

被引:49
作者
Chatterjee, Abhishek [1 ,2 ,4 ]
Lajoie, Marc J. [3 ]
Xiao, Han [1 ,2 ]
Church, George M. [3 ]
Schultz, Peter G. [1 ,2 ]
机构
[1] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[3] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[4] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA
关键词
frame-shift suppression; genomically recoded E. coli; quadruplet codons; release factor 1; unnatural amino acids; GENETIC-CODE; MULTIPLE; MUTAGENESIS; EVOLUTION; PROTEIN; LIMITS;
D O I
10.1002/cbic.201402104
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The addition of noncanonical amino acids to the genetic code requires unique codons not assigned to the 20 canonical amino acids. Among the 64 triplet codons, only the three nonsense "stop" codons have been used to encode non-native amino acids. Use of quadruplet "frame-shift" suppressor codons provides an abundant alternative but suffers from low suppression efficiency as a result of competing recognition of their first three bases by endogenous host tRNAs or release factors. Deletion of release factor 1 in a genomically recoded strain of E. coli (E. coli C321), in which all endogenous amber stop codons (UAG) are replaced with UAA, abolished UAG mediated translation termination. Here we show that a Methanocaldococcus jannaschii-derived frame-shift suppressor tRNA/aminoacyl-tRNA synthetase pair enhanced UAGN suppression efficiency in this recoded bacterial strain. These results demonstrate that efficient quadruplet codons for encoding non-native amino acids can be generated by eliminating competing triplet codon recognition at the ribosome.
引用
收藏
页码:1782 / 1786
页数:5
相关论文
共 22 条
[1]   An expanded genetic code with a functional quadruplet codon [J].
Anderson, JC ;
Wu, N ;
Santoro, SW ;
Lakshman, V ;
King, DS ;
Schultz, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (20) :7566-7571
[2]   Exploring the limits of codon and anticodon size [J].
Anderson, JC ;
Magliery, TJ ;
Schultz, PG .
CHEMISTRY & BIOLOGY, 2002, 9 (02) :237-244
[3]  
[Anonymous], 2010, ANGEW CHEM
[4]  
Chatterjee A., 2013, ANGEW CHEM, V125, P5210
[5]   A Tryptophanyl-tRNA Synthetase/tRNA Pair for Unnatural Amino Acid Mutagenesis in E.coli [J].
Chatterjee, Abhishek ;
Xiao, Han ;
Yang, Peng-Yu ;
Soundararajan, Gautam ;
Schultz, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (19) :5106-5109
[6]   A Versatile Platform for Single- and Multiple-Unnatural Amino Acid Mutagenesis in Escherichia coli [J].
Chatterjee, Abhishek ;
Sun, Sophie B. ;
Furman, Jennifer L. ;
Xiao, Han ;
Schultz, Peter G. .
BIOCHEMISTRY, 2013, 52 (10) :1828-1837
[7]   Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli [J].
Chatterjee, Abhishek ;
Xiao, Han ;
Schultz, Peter G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (37) :14841-14846
[8]  
Hoesl M. G., 2011, ANGEW CHEM, V123, P2948, DOI DOI 10.1002/ANGE.201005680
[9]   In Vivo Incorporation of Multiple Noncanonical Amino Acids into Proteins [J].
Hoesl, Michael G. ;
Budisa, Nediljko .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (13) :2896-2902
[10]   Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion [J].
Kobayashi, T ;
Nureki, O ;
Ishitani, R ;
Yaremchuk, A ;
Tukalo, M ;
Cusack, S ;
Sakamoto, K ;
Yokoyama, S .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (06) :425-432