Impact of ruthenium on microstructure and corrosion behavior of β-type Ti-Nb-Ru alloys for biomedical applications

被引:40
作者
Biesiekierski, Arne [1 ,2 ]
Ping, D. H. [2 ]
Yamabe-Mitarai, Y. [2 ]
Wen, Cuie [1 ]
机构
[1] Swinburne Univ Technol, Fac Engn & Ind Sci, Hawthorn, Vic 3122, Australia
[2] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
基金
澳大利亚研究理事会;
关键词
beta-Titanium alloys; Biomaterials; Corrosion; Microstructure; Transmission electron microscopy; SHAPE-MEMORY; TITANIUM-ALLOYS; NICKEL-TITANIUM; CYTOTOXICITY; RESISTANCE; NIOBIUM; FATIGUE; CP;
D O I
10.1016/j.matdes.2014.02.058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Corrosion behavior and microstructure of as-cast metastable 3-type Ti-20Nb-xRu (x = 0, 0.5, 1.0, 1.5 at.%) have been investigated using linear polarization and transmission electron microscopy (TEM), respectively. Ruthenium (Ru) was confirmed to be a beta-phase stabilizer as a titanium (Ti) alloying element which served to suppress both omega precipitation and elemental segregation; the prominence and degree of elemental segregation between the Nb-rich primary dendrites and the interdendritic areas rapidly decreased with minor Ru addition, yielding a more homogenous microstructure overall. Additionally, even minimal Ru additions significantly altered the corrosion potential (E-corr), yielding a 0.3 V shift in the noble direction over the Ru-free controls, along with a comparable shift in the potential at which the initial passive region begins to fail (E-inc). The present result suggests Ru addition can confer a greater resistance to corrosion in beta-Ti alloys. Crown Copyright (C) 2014 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 28 条
[1]   Fatigue, fretting fatigue and corrosion characteristics of biocompatible beta type titanium alloy conducted with various thereto-mechanical treatments [J].
Akahori, T ;
Niinomi, M ;
Fukui, H ;
Suzuki, A .
MATERIALS TRANSACTIONS, 2004, 45 (05) :1540-1548
[2]   Corrosion behavior of biomedical Ti-24Nb-4Zr-8Sn alloy in different simulated body solutions [J].
Bai, Y. ;
Hao, Y. L. ;
Li, S. J. ;
Hao, Y. Q. ;
Yang, R. ;
Prima, F. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (04) :2159-2167
[3]   Fatigue life characterization of shape memory alloys undergoing thermomechanical cyclic loading [J].
Bertacchini, OW ;
Lagoudas, DC ;
Patoor, E .
SMART STRUCTURES AND MATERIALS 2003: ACTIVE MATERIALS: BEHAVIOR AND MECHANICS, 2003, 5053 :612-624
[4]   A new look at biomedical Ti-based shape memory alloys [J].
Biesiekierski, Arne ;
Wang, James ;
Gepreel, Mohamed Abdel-Hady ;
Wen, Cuie .
ACTA BIOMATERIALIA, 2012, 8 (05) :1661-1669
[5]   Microstructural evolution and ductility improvement of a Ti-30Nb alloy with Pd addition [J].
Cui, C. Y. ;
Ping, D. H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 471 (1-2) :248-252
[6]  
Rocha Sicknan Soares da, 2006, Braz. Dent. J., V17, P126
[7]   Corrosion characterization of titanium alloys by electrochemical techniques [J].
de Assis, SL ;
Wolynec, S ;
Costa, I .
ELECTROCHIMICA ACTA, 2006, 51 (8-9) :1815-1819
[8]   Microstructure and mechanical properties of hot rolled TiNbSn alloys [J].
Griza, Sandro ;
Gomes de Souza Sa, Darcio Hersch ;
Batista, Wilton Walter ;
Garcia de Blas, Juan Carlos ;
Pereira, Luiz Carlos .
MATERIALS & DESIGN, 2014, 56 :200-208
[9]  
HADY MA, 2006, SCRIPTA MATER, V55, P477
[10]   Variation of microindentation hardness with solidification and microstructure parameters in the Al based alloys [J].
Kaya, H. ;
Cadirli, E. ;
Boyuk, U. ;
Marasli, N. .
APPLIED SURFACE SCIENCE, 2008, 255 (05) :3071-3078