Solvent Effects on Polysulfide Redox Kinetics and Ionic Conductivity in Lithium-Sulfur Batteries

被引:77
作者
Fan, Frank Y. [1 ]
Pan, Menghsuan Sam [1 ]
Lau, Kah Chun [2 ]
Assary, Rajeev S. [3 ]
Woodford, William H. [4 ]
Curtiss, Larry A. [3 ]
Carter, W. Craig [1 ]
Chiang, Yet-Ming [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
[3] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] 24M Technol, Cambridge, MA 02139 USA
关键词
ELECTRODES;
D O I
10.1149/2.1181614jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-sulfur (Li-S) batteries have high theoretical energy density and low raw materials cost compared to present lithium-ion batteries and are thus promising for use in electric transportation and other applications. A major obstacle for Li-S batteries is low rate capability, especially at the low electrolyte/sulfur (E/S) ratios required for high energy density. Herein, we investigate several potentially rate-limiting factors for Li-S batteries. We study the ionic conductivity of lithium polysulfide solutions of varying concentration and in different ether-based solvents and their exchange current density on glassy carbon working electrodes. We believe this is the first such investigation of exchange current density for lithium polysulfide in solution. Exchange current densities are measured using both electrochemical impedance spectroscopy and steady-state galvanostatic polarization. In the range of interest (1-8 M [S]), the ionic conductivity monotonically decreases with increasing sulfur concentration while exchange current density shows a more complicated relationship to sulfur concentration. The electrolyte solvent dramatically affects ionic conductivity and exchange current density. The measured ionic conductivities and exchange current densities are also used to interpret the overpotential and rate capability of polysulfide-nanocarbon suspensions; this analysis demonstrates that ionic conductivity is the rate-limiting property in the solution regime (i.e. between Li2S8 and Li2S4). (C) The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.
引用
收藏
页码:A3111 / A3116
页数:6
相关论文
共 26 条
[1]   New insights into the limiting parameters of the Li/S rechargeable cell [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Alloin, Fannie ;
Patoux, Sebastien .
JOURNAL OF POWER SOURCES, 2012, 199 :322-330
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]  
Chen X., 2016, ENERG ENVIRON SCI, V9, P1
[5]   Rechargeable lithium sulfur battery - II. Rate capability and cycle characteristics [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A800-A805
[6]   A review of blended cathode materials for use in Li-ion batteries [J].
Chikkannanavar, Satishkumar B. ;
Bernardi, Dawn M. ;
Liu, Lingyun .
JOURNAL OF POWER SOURCES, 2014, 248 :91-100
[7]   Glassy carbon electrodes I. Characterization and electrochemical activation [J].
Dekanski, A ;
Stevanovic, J ;
Stevanovic, R ;
Nikolic, BZ ;
Jovanovic, VM .
CARBON, 2001, 39 (08) :1195-1205
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy [J].
Elazari, Ran ;
Salitra, Gregory ;
Talyosef, Yossi ;
Grinblat, Judith ;
Scordilis-Kelley, Charislea ;
Xiao, Ang ;
Affinito, John ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1131-A1138
[10]   Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery [J].
Eroglu, Damla ;
Zavadil, Kevin R. ;
Gallagher, Kevin G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A982-A990