Existence of extremals for the Maz'ya and for the Caffarelli-Kohn-Nirenberg inequalities

被引:9
作者
Musina, Roberta [1 ]
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
关键词
Variational methods; Critical growth; Weighted L-P-Laplace operator; Caffarelli-Kohn-Nirenberg inequalities; Maz'ya inequalities; H-SYSTEMS; SOBOLEV; NONEXISTENCE; CONSTANT; SYMMETRY; BLOWUP;
D O I
10.1016/j.na.2008.12.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with some Sobolev-type inequalities with weights that were proved by Maz'ya in 1980 and by Caffarelli-Kohn-Nirenberg in 1984. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3002 / 3007
页数:6
相关论文
共 21 条
[1]  
[Anonymous], 1980, SOBOLEV SPACES
[2]  
Aubin T., 1976, J. Differential Geom, V11, P573, DOI [10.4310/jdg/1214433725, DOI 10.4310/JDG/1214433725]
[3]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[4]   MULTIPLE SOLUTIONS TO THE PLATEAU-PROBLEM FOR NONCONSTANT MEAN-CURVATURE [J].
BETHUEL, F ;
REY, O .
DUKE MATHEMATICAL JOURNAL, 1994, 73 (03) :593-646
[5]   CONVERGENCE OF SOLUTIONS OF H-SYSTEMS OR HOW TO BLOW BUBBLES [J].
BREZIS, H ;
CORON, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (01) :21-56
[6]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[7]   The Dirichlet problem for H-systems with small boundary data:: Blowup phenomena and nonexistence results [J].
Caldiroli, P ;
Musina, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 181 (01) :1-42
[8]   Weak limit and blowup of approximate solutions to H-systems [J].
Caldiroli, Paolo ;
Musina, Roberta .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 249 (01) :171-198
[9]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[10]  
2-I