CTE method to the interaction solutions of Boussinesq-Burgers equations

被引:61
作者
Wang, Yun-Hu [1 ]
机构
[1] Shanghai Maritime Univ, Coll Art & Sci, Shanghai 201306, Peoples R China
关键词
Boussinesq-Burgers equations; Interaction solutions; CTE method; Painleve analysis; TANH-FUNCTION METHOD; ORDINARY DIFFERENTIAL-EQUATIONS; LINEAR EVOLUTION-EQUATIONS; SOLITARY WAVE SOLUTIONS; WATER-WAVES; NONLINEAR EQUATIONS; PERIODIC-WAVES; P-TYPE; SOLITONS; TRANSFORMATION;
D O I
10.1016/j.aml.2014.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under investigation in this paper is the Boussinesq-Burgers equations, which describe the propagation of shallow water waves. Via the truncated Painleve analysis and the consistent tanh expansion (CTE) method, some exact interaction solutions among different nonlinear excitations such as multiple resonant soliton solutions, soliton-error function waves, soliton-periodic waves, soliton-rational waves, and soliton-potential Burgers waves are explicitly given. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:100 / 105
页数:6
相关论文
共 24 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .2. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1006-1015
[2]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[3]   Darboux transformation and soliton solutions for Boussinesq-Burgers equation [J].
Chen, AH ;
Li, XM .
CHAOS SOLITONS & FRACTALS, 2006, 27 (01) :43-49
[4]   GTE Solvability, Non local Symmetries and Exact Solutions of Dispersive Water Wave System [J].
Chen Chun-Li ;
Lou Sen-Yue .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (05) :545-550
[5]   CTE Solvability and Exact Solution to the Broer-Kaup System [J].
Chen Chun-Li ;
Lou Sen-Yue .
CHINESE PHYSICS LETTERS, 2013, 30 (11)
[6]   Nonlocal symmetry constraints and exact interaction solutions of the (2+1) dimensional modified generalized long dispersive wave equation [J].
Chen, Junchao ;
Chen, Yong .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (03) :454-472
[7]   Nonlocal symmetries of the Hirota-Satsuma coupled Korteweg-de Vries system and their applications: Exact interaction solutions and integrable hierarchy [J].
Chen, Junchao ;
Xin, Xiangpeng ;
Chen, Yong .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (05)
[8]   Generalized extended tanh-function method to construct new explicit exact solutions for the approximate equations for long water waves [J].
Chen, Y ;
Yu, Z .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (05) :601-611
[9]  
Cheng X P, 2012, ARXIV12083259
[10]  
Ebadi G, 2012, ROM REP PHYS, V64, P915