From High-Entropy Alloys to High-Entropy Steels

被引:167
|
作者
Raabe, Dierk [1 ]
Tasan, Cemal Cem [1 ]
Springer, Hauke [1 ]
Bausch, Michael [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Dept Microstruct Phys & Alloy Design, D-40237 Dusseldorf, Germany
关键词
high-entropy alloys; TWIP; TRIP; strain hardening; low-density steels; TRANSFORMATION-INDUCED PLASTICITY; C TWIP STEEL; HIGH-STRENGTH; MECHANICAL-PROPERTIES; DEFORMATION-BEHAVIOR; STAINLESS-STEEL; PHASE-STABILITY; STRIP-CAST; CRYSTALLOGRAPHIC TEXTURE; TENSILE PROPERTIES;
D O I
10.1002/srin.201500133
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Inspired by high-entropy alloys, we study the design of steels that are based on high configurational entropy for stabilizing a single-phase solid solution matrix. The focus is placed on the system Fe-Mn-Al-Si-C but we also present trends in the alloy system Fe-Mn-Al-C. Unlike in conventional high-entropy alloys, where five or more equiatomically proportioned components are used, we exploit the flat configurational entropy plateau in transition metal mixtures, stabilizing solid solutions also for lean, non-equiatomic compositions. This renders the high-entropy alloying concept, where none of the elements prevails, into a class of Fe-based materials which we refer to as high-entropy steels. A point that has received little attention in high-entropy alloys is the use of interstitial elements. Here, we address the role of C in face-centered cubic solid solution phases. High-entropy steels reveal excellent mechanical properties, namely, very high ductility and toughness; excellent high rate and low-temperature ductility; high strength of up to 1 GPa; up to 17% reduced mass density; and very high strain hardening. The microstructure stability can be tuned by adjusting the stacking fault energy. This enables to exploit deformation effects such as the TRIP, TWIP, or precipitation determined mechanisms.
引用
收藏
页码:1127 / 1138
页数:12
相关论文
共 50 条
  • [41] Synthesis and properties of high-entropy CoCrFeNiMnWx alloys
    Razumov, Nikolay
    Makhmutov, Tagir
    Kim, Artem
    Masaylo, Dmitriy
    Kovalev, Mark
    Popovich, Anatoliy
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 9216 - 9224
  • [42] Recent progress in lightweight high-entropy alloys
    Li, Ruixuan
    Geng, Guihong
    Zhang, Yong
    MRS COMMUNICATIONS, 2023, 13 (05) : 740 - 753
  • [43] Size effects on plasticity in high-entropy alloys
    Basu, Indranil
    Ocelik, Vaclav
    De Hosson, Jeff Th. M.
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 3055 - 3076
  • [44] Properties and processing technologies of high-entropy alloys
    Yan, Xuehui
    Zou, Yu
    Zhang, Yong
    MATERIALS FUTURES, 2022, 1 (02):
  • [45] Thermodynamic Analysis for Microstructure of High-Entropy Alloys
    Pi Jinhong
    Pan Ye
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 (02) : 232 - 237
  • [46] Severe Plastic Deformation of High-Entropy Alloys
    Skrotzki, Werner
    Chulist, Robert
    MATERIALS TRANSACTIONS, 2023, 64 (08) : 1769 - 1783
  • [47] Microstructure and Mechanical Behavior of High-Entropy Alloys
    Joseph J. Licavoli
    Michael C. Gao
    John S. Sears
    Paul D. Jablonski
    Jeffrey A. Hawk
    Journal of Materials Engineering and Performance, 2015, 24 : 3685 - 3698
  • [48] Superplasticity in Severely Deformed High-Entropy Alloys
    Shahmir, Hamed
    Mehranpour, Mohammad Sajad
    Kawasaki, Megumi
    Langdon, Terence G.
    MATERIALS TRANSACTIONS, 2023, 64 (07) : 1526 - 1536
  • [49] Preternatural Hexagonal High-Entropy Alloys: A Review
    Li, Rui-Xuan
    Qiao, Jun-Wei
    Liaw, Peter K.
    Zhang, Yong
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2020, 33 (08) : 1033 - 1045
  • [50] From high-entropy alloys to high-entropy ceramics: The radiation-resistant highly concentrated refractory carbide (CrNbTaTiW)C
    Tunes, Matheus A.
    Fritze, Stefan
    Osinger, Barbara
    Willenshofer, Patrick
    Alvarado, Andrew M.
    Martinez, Enrique
    Menon, Ashok S.
    Strom, Petter
    Greaves, Graeme
    Lewin, Erik
    Jansson, Ulf
    Pogatscher, Stefan
    Saleh, Tarik A.
    Vishnyakov, Vladimir M.
    El-Atwani, Osman
    ACTA MATERIALIA, 2023, 250