From High-Entropy Alloys to High-Entropy Steels

被引:167
|
作者
Raabe, Dierk [1 ]
Tasan, Cemal Cem [1 ]
Springer, Hauke [1 ]
Bausch, Michael [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Dept Microstruct Phys & Alloy Design, D-40237 Dusseldorf, Germany
关键词
high-entropy alloys; TWIP; TRIP; strain hardening; low-density steels; TRANSFORMATION-INDUCED PLASTICITY; C TWIP STEEL; HIGH-STRENGTH; MECHANICAL-PROPERTIES; DEFORMATION-BEHAVIOR; STAINLESS-STEEL; PHASE-STABILITY; STRIP-CAST; CRYSTALLOGRAPHIC TEXTURE; TENSILE PROPERTIES;
D O I
10.1002/srin.201500133
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Inspired by high-entropy alloys, we study the design of steels that are based on high configurational entropy for stabilizing a single-phase solid solution matrix. The focus is placed on the system Fe-Mn-Al-Si-C but we also present trends in the alloy system Fe-Mn-Al-C. Unlike in conventional high-entropy alloys, where five or more equiatomically proportioned components are used, we exploit the flat configurational entropy plateau in transition metal mixtures, stabilizing solid solutions also for lean, non-equiatomic compositions. This renders the high-entropy alloying concept, where none of the elements prevails, into a class of Fe-based materials which we refer to as high-entropy steels. A point that has received little attention in high-entropy alloys is the use of interstitial elements. Here, we address the role of C in face-centered cubic solid solution phases. High-entropy steels reveal excellent mechanical properties, namely, very high ductility and toughness; excellent high rate and low-temperature ductility; high strength of up to 1 GPa; up to 17% reduced mass density; and very high strain hardening. The microstructure stability can be tuned by adjusting the stacking fault energy. This enables to exploit deformation effects such as the TRIP, TWIP, or precipitation determined mechanisms.
引用
收藏
页码:1127 / 1138
页数:12
相关论文
共 50 条
  • [31] The Temperature Dependence of Deformation Behaviors in High-Entropy Alloys: A Review
    Wu, Pengfei
    Gan, Kefu
    Yan, Dingshun
    Li, Zhiming
    METALS, 2021, 11 (12)
  • [32] Materials and manufacturing renaissance: Additive manufacturing of high-entropy alloys
    Kim, Jinyeon
    Wakai, Akane
    Moridi, Atieh
    JOURNAL OF MATERIALS RESEARCH, 2020, 35 (15) : 1963 - 1983
  • [33] Phase Stability in High-Entropy Alloys: The Role of Configurational Entropy
    Ye, Zhenhua
    Li, Chuanwei
    Gu, Jianfeng
    JOM, 2022, 74 (11) : 4154 - 4161
  • [34] Composition of Intermetallic Phases in High-Entropy Alloys: Compositional Inheritance of High-Entropy Sigma Phases from Binary Counterparts
    Ruei-Chi Tsai
    An-Chen Fan
    Wen-Fei Huang
    Yu-Wen Shi
    Daniel B. Miracle
    Wen-Yi Lai
    Ming-Hung Tsai
    High Entropy Alloys & Materials, 2024, 2 (1): : 33 - 40
  • [35] High-Entropy Alloys: Potential Candidates for High-Temperature Applications - An Overview
    Praveen, Sathiyamoorthi
    Kim, Hyoung Seop
    ADVANCED ENGINEERING MATERIALS, 2018, 20 (01)
  • [36] New TiTaNbZrMo high-entropy alloys for metallic biomaterials
    Li, Chenwei
    Ma, Ying
    Yang, Xu
    Hou, Minghao
    MATERIALS RESEARCH EXPRESS, 2021, 8 (10)
  • [37] BASICS OF ADDITIVE MANUFACTURING PROCESSES FOR HIGH-ENTROPY ALLOYS
    Zavdoveev, A. V.
    Baudin, T.
    Mohan, D. G.
    Pakula, D. L.
    Vedel, D. V.
    Skoryk, M. A.
    USPEKHI FIZIKI METALLOV-PROGRESS IN PHYSICS OF METALS, 2023, 24 (03): : 561 - 592
  • [38] Relation Between Strength and Hardness of High-Entropy Alloys
    Fan, Xiaojuan
    Qu, Ruitao
    Zhang, Zhefeng
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2021, 34 (11) : 1461 - 1482
  • [39] A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing
    Haftlang, Farahnaz
    Kim, Hyoung Seop
    MATERIALS & DESIGN, 2021, 211
  • [40] Additive Manufacturing of High-Entropy Alloys: A Review
    Chen, Shuying
    Tong, Yang
    Liaw, Peter K.
    ENTROPY, 2018, 20 (12)