Influence of the training set selection on the performance of the neural network state variables estimators in the induction motor

被引:0
作者
Jelonkiewicz, J [1 ]
Przybyl, A [1 ]
机构
[1] Czestochowa Tech Univ, PL-42200 Czestochowa, Poland
来源
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004 | 2004年 / 3070卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the paper three neural networks state variables estimators of the induction motor are considered, which recreate rotor angular speed, rotor flux and stator current components in the rotor flux reference frame. Input variables for the neural estimators are the components of stator current and voltage to allow for sensor less control of induction motor drive. Performance of the estimators is compared for the networks trained using static, dynamic and mixed sets of data. Intention of the analysis is to find the best way the training data are obtained that assures possibly high accuracy of the estimators.
引用
收藏
页码:966 / 971
页数:6
相关论文
共 5 条
[1]  
JELONKIEWICZ J, 2002, PEMC 02 DUBR
[2]  
JELONKIEWICZ J, 2001, P EPE 01 GRAZ
[3]   Speed-sensorless vector control of an induction motor using neural network speed estimation [J].
Kim, SH ;
Park, TS ;
Yoo, JY ;
Park, GT .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48 (03) :609-614
[4]  
ORLOWSKAKOWALSK.T, 1997, P ISIE 97 IEEE
[5]  
VAS P, 1999, MONOGRAPHS ELECT ELE, V45