Simple ways to interpret effects in modeling ordinal categorical data

被引:31
作者
Agresti, Alan [1 ]
Tarantola, Claudia [2 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[2] Univ Pavia, Dept Econ & Management, I-27100 Pavia, Italy
关键词
cumulative link models; cumulative logits; marginal effects; multiple correlation; proportional odds; R-squared; stochastic ordering; REGRESSION;
D O I
10.1111/stan.12130
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We survey effect measures for models for ordinal categorical data that can be simpler to interpret than the model parameters. For describing the effect of an explanatory variable while adjusting for other explanatory variables, we present probability-based measures, including a measure of relative size and partial effect measures based on instantaneous rates of change. We also discuss summary measures of predictive power that are analogs of R-squared and multiple correlation for quantitative response variables. We illustrate the measures for an example and provide R code for implementing them.
引用
收藏
页码:210 / 223
页数:14
相关论文
共 26 条
[1]   APPLYING R2-TYPE MEASURES TO ORDERED CATEGORICAL-DATA [J].
AGRESTI, A .
TECHNOMETRICS, 1986, 28 (02) :133-138
[2]  
Agresti A., 2003, CATEGORICAL DATA ANA
[3]  
Agresti A, 2010, Analysis of ordinal categorical data, V2nd, DOI 10.1002/ 9780470594001
[4]  
Agresti A., 2015, Foundations of linear and generalized linear models
[5]   Ordinal Probability Effect Measures for Group Comparisons in Multinomial Cumulative Link Models [J].
Agresti, Alan ;
Kateri, Maria .
BIOMETRICS, 2017, 73 (01) :214-219
[6]  
Anderson J. A., 1981, Applied Statistics, V30, P22, DOI 10.2307/2346654
[7]  
Greene William, 2018, Econometric Analysis, V8th
[8]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[9]  
2-4
[10]   Adjusted coefficients of determination for logistic regression [J].
Liao, JG ;
McGee, D .
AMERICAN STATISTICIAN, 2003, 57 (03) :161-165