Rectilinear spanning trees versus bounding boxes

被引:0
作者
Rautenbach, D [1 ]
机构
[1] Univ Bonn, Forschungsinst Diskrete Math, D-53113 Bonn, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a set Psubset of or equal toR(2) with 2less than or equal ton=\P\<∞ we prove that mst(P)/bb(P) ≤ 1/√2 √n +3/2 where mst( P) is the minimum total length of a rectilinear spanning tree for P and bb(P) is half the perimeter of the bounding box of P. Since the constant 1/√2 in the above bound is best-possible, this result settles a problem that was mentioned by Brenner and Vygen ( Networks 38 (2001), 126-139).
引用
收藏
页数:4
相关论文
共 4 条
[1]   Worst-case ratios of networks in the rectilinear plane [J].
Brenner, U .
NETWORKS, 2001, 38 (03) :126-139
[2]  
CHUNG FRK, 1981, GEOM DEDICATA, V11, P353, DOI 10.1007/BF00149359
[3]  
Few L., 1955, Mathematika, V2, P141, DOI [10.1112/S0025579300000784., 10.1112/S0025579300000784]
[4]   STEINER MINIMAL TREES WITH RECTILINEAR DISTANCE [J].
HWANG, FK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (01) :104-115