Single-cell cytometry via multiplexed fluorescence prediction by label-free reflectance microscopy

被引:55
作者
Cheng, Shiyi [1 ]
Fu, Sipei [2 ]
Kim, Yumi Mun [3 ]
Song, Weiye [4 ]
Li, Yunzhe [1 ]
Xue, Yujia [1 ]
Yi, Ji [1 ,4 ,5 ,6 ]
Tian, Lei [1 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Dept Biol, 5 Cummington St, Boston, MA 02215 USA
[3] Boston Univ, Dept Philosophy & Neurosci, Boston, MA 02215 USA
[4] Boston Univ, Sch Med, Boston Med Ctr, Dept Med, Boston, MA 02118 USA
[5] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[6] Johns Hopkins Univ, Dept Biomed Engn & Ophthalmol, Baltimore, MD 21231 USA
基金
美国国家科学基金会;
关键词
All Open Access; Gold; Green;
D O I
10.1126/sciadv.abe0431
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Traditional imaging cytometry uses fluorescence markers to identify specific structures but is limited in throughput by the labeling process. We develop a label-free technique that alleviates the physical staining and provides multiplexed readouts via a deep learning-augmented digital labeling method. We leverage the rich structural information and superior sensitivity in reflectance microscopy and show that digital labeling predicts accurate subcellular features after training on immunofluorescence images. We demonstrate up to three times improvement in the prediction accuracy over the state of the art. Beyond fluorescence prediction, we demonstrate that single cell-level structural phenotypes of cell cycles are correctly reproduced by the digital multiplexed images, including Golgi twins, Golgi haze during mitosis, and DNA synthesis. We further show that the multiplexed readouts enable accurate multiparametric single-cell profiling across a large cell population. Our method can markedly improve the throughput for imaging cytometry toward applications for phenotyping, pathology, and high-content screening.
引用
收藏
页数:12
相关论文
共 44 条
[1]   Quantitative morphological signatures define local signaling networks regulating cell morphology [J].
Bakal, Chris ;
Aach, John ;
Church, George ;
Perrimon, Norbert .
SCIENCE, 2007, 316 (5832) :1753-1756
[2]   Label-free cell cycle analysis for high-throughput imaging flow cytometry [J].
Blasi, Thomas ;
Hennig, Holger ;
Summers, Huw D. ;
Theis, Fabian J. ;
Cerveira, Joana ;
Patterson, James O. ;
Davies, Derek ;
Filby, Andrew ;
Carpenter, Anne E. ;
Rees, Paul .
NATURE COMMUNICATIONS, 2016, 7
[3]   Microscopic Imaging and Spectroscopy with Scattered Light [J].
Boustany, Nada N. ;
Boppart, Stephen A. ;
Backman, Vadim .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 12, 2010, 12 :285-314
[4]   Prospective identification of hematopoietic lineage choice by deep learning [J].
Buggenthin, Felix ;
Buettner, Florian ;
Hoppe, Philipp S. ;
Endele, Max ;
Kroiss, Manuel ;
Strasser, Michael ;
Schwarzfischer, Michael ;
Loeffler, Dirk ;
Kokkaliaris, Konstantinos D. ;
Hilsenbeck, Oliver ;
Schroeder, Timm ;
Theis, Fabian J. ;
Marr, Carsten .
NATURE METHODS, 2017, 14 (04) :403-+
[5]  
Caicedo JC, 2017, NAT METHODS, V14, P849, DOI [10.1038/NMETH.4397, 10.1038/nmeth.4397]
[6]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[7]   Deep Learning in Label-free Cell Classification [J].
Chen, Claire Lifan ;
Mahjoubfar, Ata ;
Tai, Li-Chia ;
Blaby, Ian K. ;
Huang, Allen ;
Niazi, Kayvan Reza ;
Jalali, Bahram .
SCIENTIFIC REPORTS, 2016, 6
[8]   Interferometric Spectroscopy of Scattered Light Can Quantify the Statistics of Subdiffractional Refractive-Index Fluctuations [J].
Cherkezyan, L. ;
Capoglu, I. ;
Subramanian, H. ;
Rogers, J. D. ;
Damania, D. ;
Taflove, A. ;
Backman, V. .
PHYSICAL REVIEW LETTERS, 2013, 111 (03)
[9]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[10]   In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images [J].
Christiansen, Eric M. ;
Yang, Samuel J. ;
Ando, D. Michael ;
Javaherian, Ashkan ;
Skibinski, Gaia ;
Lipnick, Scott ;
Mount, Elliot ;
O'Neil, Alison ;
Shah, Kevan ;
Lee, Alicia K. ;
Goyal, Piyush ;
Fedus, William ;
Poplin, Ryan ;
Esteva, Andre ;
Berndl, Marc ;
Rubin, Lee L. ;
Nelson, Philip ;
Finkbeiner, Steven .
CELL, 2018, 173 (03) :792-+