T-Count Optimization and Reed-Muller Codes

被引:32
作者
Amy, Matthew [1 ,2 ]
Mosca, Michele [1 ,3 ,4 ,5 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[5] Canadian Inst Adv Res, Toronto, ON M5G 1M1, Canada
关键词
Quantum circuits; Reed-Muller codes; minimum distance decoding; circuit optimization; QUANTUM COMPUTATION; CLIFFORD; ALGORITHM; CIRCUITS; APPROXIMATION; GATES;
D O I
10.1109/TIT.2019.2906374
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the close relationship between Reed-Muller codes and single-qubit phase gates from the perspective of T-count optimization. We prove that minimizing the number of T gates in an n-qubit quantum circuit over CNOT and T, together with the Clifford group powers of T, corresponds to finding a minimum distance decoding of a length 2(n) - 1 binary vector in the order n - 4 punctured Reed-Muller code. Moreover, we show that the problems are polynomially equivalent in the length of the code. As a consequence, we derive an algorithm for the optimization of T-count in quantum circuits based on Reed-Muller decoders, along with a new upper bound of O(n(2)) on the number of T gates required to implement an n-qubit unitary over CNOT and T gates. We further generalize this result to show that minimizing small angle rotations corresponds to decoding lower order binary Reed-Muller codes. In particular, we show that minimizing the number of R-Z(2 pi / m) gates for any integer m is equivalent to minimum distance decoding in RM(n - k - 1, n)*, where k is the highest power of 2 dividing m.
引用
收藏
页码:4771 / 4784
页数:14
相关论文
共 43 条
[1]  
Abdessaied N, 2014, LECT NOTES COMPUT SC, V8507, P149, DOI 10.1007/978-3-319-08494-7_12
[2]  
Amy M., T PAR QUANTUM CIRCUI
[3]   Polynomial-Time T-Depth Optimization of Clifford plus T Circuits Via Matroid Partitioning [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2014, 33 (10) :1476-1489
[4]   A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele ;
Roetteler, Martin .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2013, 32 (06) :818-830
[5]  
Anderson JT, 2016, QUANTUM INF COMPUT, V16, P771
[6]  
[Anonymous], 1996, Threshold accuracy for quantum computation
[7]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[8]   Efficient Synthesis of Universal Repeat-Until-Success Quantum Circuits [J].
Bocharov, Alex ;
Roetteler, Martin ;
Svore, Krysta M. .
PHYSICAL REVIEW LETTERS, 2015, 114 (08)
[9]   Magic-state distillation with low overhead [J].
Bravyi, Sergey ;
Haah, Jeongwan .
PHYSICAL REVIEW A, 2012, 86 (05)
[10]   Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes [J].
Campbell, Earl T. ;
Anwar, Hussain ;
Browne, Dan E. .
PHYSICAL REVIEW X, 2012, 2 (04)