ON THE GREATEST PRIME FACTOR OF ab+1

被引:3
作者
Matomaki, K. [1 ]
机构
[1] Univ Turku, Dept Math, Turku 20014, Finland
关键词
greatest prime factor; Kloosterman sums; linear sieve;
D O I
10.1007/s10474-009-8163-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that whenever A and B are dense enough subsets of (1,..., N}, there exist a epsilon A and b epsilon B such that the greatest prime factor of ab + 1 is at least N1+vertical bar A vertical bar(9N).
引用
收藏
页码:115 / 123
页数:9
相关论文
共 8 条
  • [1] [Anonymous], 1980, Acta Arith.
  • [2] [Anonymous], 1976, CAMBRIDGE TRACTS MAT
  • [3] PRIMES IN ARITHMETIC PROGRESSIONS TO LARGE MODULI .2.
    BOMBIERI, E
    FRIEDLANDER, JB
    IWANIEC, H
    [J]. MATHEMATISCHE ANNALEN, 1987, 277 (03) : 361 - 393
  • [4] SOME PROBLEMS OF ANALYTIC NUMBER THEORY ON ARITHMETIC SEMIGROUPS
    Harman, Glyn
    Matomaeki, Kaisa
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2008, 38 (01) : 21 - 39
  • [5] Iwaniec H., 2004, Amer. Math. Soc. Colloq. Publ., V53
  • [6] Sárközy A, 2000, PUBL MATH-DEBRECEN, V56, P559
  • [7] SARKOZY A, 2001, PERIOD MATH HUNG, V42, P17, DOI DOI 10.1023/A:1015236305093
  • [8] Stewart C.L., 2001, PERIOD MATH HUNG, V43, P81