Evolutionary extreme learning machine for the behavioral modeling of RF power amplifiers

被引:2
作者
Fu, Haipeng [1 ,2 ]
Wan, Kaikai [1 ,2 ,3 ,4 ]
Ma, Kaixue [1 ,2 ]
Xing, Guangyu [1 ,3 ]
Ma, Jianguo [3 ,4 ,5 ]
机构
[1] Tianjin Univ, Sch Microelect, Tianjin 300072, Peoples R China
[2] Tianjin Key Lab Imaging & Sensing Microelect Tech, Tianjin, Peoples R China
[3] Qingdao Key Lab Ocean Percept & Informat Transmis, Qingdao, Shandong, Peoples R China
[4] Tianjin Univ, Qingdao Inst Ocean Engn, Qingdao, Shandong, Peoples R China
[5] Guangdong Univ Technol, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
behavioral modeling; differential evolution; extreme learning machine; power amplifiers;
D O I
10.1002/jnm.2659
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, evolutionary extreme learning machine (E-ELM) is first introduced for RF power amplifiers (PAs) behavioral modeling. This approach combined differential evolution (DE) and extreme learning machine (ELM) to effectively solve the problem that more neurons of hidden layer are required, and repeated trials are necessary in behavioral modeling PAs by conventional ELM. As revealed in the modeling practices on Class-AB and Class-E PAs, fewer hidden layer neurons are used than the condition of conventional ELM. Meanwhile, it is found that ELM's unstable generalization ability in modeling PAs is also significantly improved, thanks to the internal DE method in the E-ELM.
引用
收藏
页数:15
相关论文
共 19 条
[1]   Handwritten character recognition using wavelet energy and extreme learning machine [J].
Chacko, Binu P. ;
Krishnan, V. R. Vimal ;
Raju, G. ;
Anto, P. Babu .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2012, 3 (02) :149-161
[2]  
Cheng-Yu Zhang, 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS), P558, DOI 10.1109/MWSYM.2017.8058626
[3]  
Cripps S. C., 2006, RF POWER AMPLIFIERS
[4]   A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks [J].
Fang, YH ;
Yagoub, MCE ;
Wang, F ;
Zhang, QJ .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (12) :2335-2344
[5]  
Han K, 2014, INTERSPEECH, P223
[6]  
Huang GB, 2004, IEEE IJCNN, P985
[7]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501
[8]   A comparative analysis of behavioral models for RF power amplifiers [J].
Isaksson, M ;
Wisell, D ;
Rönnow, D .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (01) :348-359
[9]   Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks [J].
Isaksson, M ;
Wisell, D ;
Rönnow, D .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (11) :3422-3428
[10]  
Jeruchim Michel C, 2006, SIMULATION COMMUNICA