Dynamic Stability and Instability of Pinned Fundamental Vortices

被引:7
作者
Gustafson, S. [2 ]
Ting, F. [1 ]
机构
[1] Lakehead Univ, Dept Math Sci, Thunder Bay, ON P7B 5E1, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Ginzburg-Landau; External potential; Gradient and Hamiltonian dynamics; Orbital stability/instability; Pinned vortices; Asymptotic stability; NONLINEAR SCHRODINGER-EQUATIONS; SEMICLASSICAL BOUND-STATES; GINZBURG-LANDAU; SYMMETRIC VORTICES; MAGNETIC VORTICES; PINNING PHENOMENA; VORTEX; SUPERCONDUCTIVITY; POTENTIALS; EXISTENCE;
D O I
10.1007/s00332-009-9039-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamic stability and instability of pinned fundamental +/- 1 vortex solutions to the Ginzburg-Landau equations with external potential in R-2. For sufficiently small external potentials, there exists a perturbed vortex solution centered near each non-degenerate critical point of the potential. With respect to both dissipative and Hamiltonian dynamics, we show that perturbed vortex solutions which are concentrated near local maxima (resp. minima) are orbitally stable (resp. unstable). In the dissipative case, the stability is in the stronger "asymptotic" sense.
引用
收藏
页码:341 / 374
页数:34
相关论文
共 34 条
[1]   Pinning phenomena in the Ginzburg-Landau model of superconductivity [J].
Aftalion, A ;
Sandier, E ;
Serfaty, S .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (03) :339-372
[2]  
Almeida L, 2001, REV MAT IBEROAM, V17, P409
[3]   Vortex pinning with bounded fields for the Ginzburg-Landau equation [J].
Andre, N ;
Bauman, P ;
Phillips, D .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (04) :705-729
[4]  
[Anonymous], 1996, APPL MATH SCI
[5]   Renormalization group analysis of spectral problems in quantum field theory [J].
Bach, V ;
Frohlich, J ;
Sigal, IM .
ADVANCES IN MATHEMATICS, 1998, 137 (02) :205-298
[6]   SYMMETRIC VORTICES FOR THE GINZBERG-LANDAU EQUATIONS OF SUPERCONDUCTIVITY AND THE NONLINEAR DESINGULARIZATION PHENOMENON [J].
BERGER, MS ;
CHEN, YY .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 82 (02) :259-295
[7]   THE GLOBAL EXISTENCE OF TIME-DEPENDENT VORTEX SOLUTIONS [J].
BURZLAFF, J ;
MONCRIEF, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (06) :1368-1372
[8]   Vortex pinning by inhomogeneities in type-II superconductors [J].
Chapman, SJ ;
Richardson, G .
PHYSICA D, 1997, 108 (04) :397-407
[9]  
Chapman SJ., 1995, Eur. J. Appl. Math, V6, P97, DOI DOI 10.1017/S0956792500001716
[10]  
DEMOULINI S, 1997, COMMUN ANAL GEOM, V5, P121