Symmetry-bridging phase as the mechanism for the large strains in relaxor-PbTiO3 single crystals

被引:11
作者
Kim, Hwang-Pill [1 ]
Lee, Geon-Ju [1 ]
Jeong, Hu Young [2 ]
Jang, Jin-Hyuck [3 ]
Kim, Gi-Yeop [3 ]
Choi, Si-Young [3 ]
Lee, Ho-Yong [4 ]
Lee, Sang-Goo [5 ]
Jo, Wook [1 ]
机构
[1] UNIST, Sch Mat Sci & Engn, Ulsan 44919, South Korea
[2] UNIST, Cent Res Facil, Ulsan 44919, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[4] Sun Moon Univ, Dept Mat Sci & Engn, Asan 31460, South Korea
[5] iBULe Photon Inc, 7-39 Songdo Dong, Incheon 21999, South Korea
基金
新加坡国家研究基金会;
关键词
Piezoelectricity; Single crystals; Relaxor-PT; Morphotropic phase boundary; ULTRAHIGH PIEZOELECTRICITY; POLARIZATION ROTATION; CERAMICS;
D O I
10.1016/j.jeurceramsoc.2019.04.022
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Relaxor-PbTiO3 piezoelectric single crystals have been of a great interest, since the discovery of ultrahigh piezoresponse demonstrated in < 001 > -oriented crystals of the composition at the rhombohedral side of morphotropic phase boundary. It has been proposed that the exceptionally large piezoelectric properties should originate from an electric-field-induced polarization rotation that involves a reversible phase transformation between rhombohedral and tetragonal via monoclinic symmetry. However, this commonly accepted polarization rotation mechanism has its limit in explaining still the excellent piezoelectricity even at a small excitation field far below the coercive field. Here, we show by a comparative study using single crystals from two distinct processing techniques, the polarization rotation has, if ever, little influence on the strain properties of < 001 > -oriented rhombohedral relaxor-PbTiO3 single crystals. Instead, they may come from a reversible shear-mode piezoelectric contribution from electric-field-susceptible 'symmetry-bridging' unit-cell-level phases, the polarization direction of which spans monoclinic symmetry.
引用
收藏
页码:3327 / 3331
页数:5
相关论文
共 30 条
[1]  
[Anonymous], 1999, FERROELECTRICS, DOI DOI 10.1080/00150199908014518
[2]   Stability of glassy and ferroelectric states in the relaxors PbMg1/3Nb2/3O3 and PbMg1/3Nb2/3O3-12% PbTiO3 [J].
Colla, Eugene V. ;
Vigil, Derek ;
Timmerwilke, John ;
Weissman, M. B. ;
Viehland, D. D. ;
Dkhil, Brahim .
PHYSICAL REVIEW B, 2007, 75 (21)
[3]   A morphotropic phase boundary system based on polarization rotation and polarization extension [J].
Damjanovic, Dragan .
APPLIED PHYSICS LETTERS, 2010, 97 (06)
[4]   Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics [J].
Davis, Matthew ;
Budimir, Marko ;
Damjanovic, Dragan ;
Setter, Nava .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
[5]   Unique Piezoelectric Properties of the Monoclinic Phase in Pb(Zr,Ti)O3 Ceramics: Large Lattice Strain and Negligible Domain Switching [J].
Fan, Longlong ;
Chen, Jun ;
Ren, Yang ;
Pan, Zhao ;
Zhang, Linxing ;
Xing, Xianran .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[6]   Notes of the recent structural studies on lead zirconate titanate [J].
Frantti, J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (21) :6521-6535
[7]   Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics [J].
Fu, HX ;
Cohen, RE .
NATURE, 2000, 403 (6767) :281-283
[8]   THERMODYNAMIC THEORY OF PBTIO3 [J].
HAUN, MJ ;
FURMAN, E ;
JANG, SJ ;
MCKINSTRY, HA ;
CROSS, LE .
JOURNAL OF APPLIED PHYSICS, 1987, 62 (08) :3331-3338
[9]   Giant electric-field-induced strains in lead-free ceramics for actuator applications - status and perspective [J].
Jo, Wook ;
Dittmer, Robert ;
Acosta, Matias ;
Zang, Jiadong ;
Groh, Claudia ;
Sapper, Eva ;
Wang, Ke ;
Roedel, Juergen .
JOURNAL OF ELECTROCERAMICS, 2012, 29 (01) :71-93
[10]   Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics [J].
Jo, Wook ;
Daniels, John E. ;
Jones, Jacob L. ;
Tan, Xiaoli ;
Thomas, Pamela A. ;
Damjanovic, Dragan ;
Roedel, Juergen .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (01)