Dissipativity of linear θ-methods for integro-differential equations

被引:20
|
作者
Gan, Siqing [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
dissipativity; integro-differential equation; theta-method; A-stability;
D O I
10.1016/j.camwa.2006.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the analytic and numerical dissipativity of nonlinear integro-differential equations (IDEs). A dissipativity criteria for IDEs is given. It is shown that any A-stable linear theta-method for the systems is dissipative. Numerical examples are given to confirm the theoretical results. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:449 / 458
页数:10
相关论文
共 50 条
  • [31] Dissipativity of Runge-Kutta methods for a class of nonlinear functional-integro-differential equations
    Liao, Qing
    Wen, Liping
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [32] Dissipativity of one-leg methods for a class of nonlinear functional-integro-differential equations
    Wen, Liping
    Liao, Qing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 318 : 26 - 37
  • [33] Oscillation of nonlinear delay integro-differential equations
    Bacova, Beatrix
    Olach, Rudolf
    CDDEA '06: PROCEEDINGS OF THE CONFERENCE ON DIFFERENTIAL AND DIFFERENCE EQUATIONS AND APPLICATIONS 2006, 2007, 38 : 1 - 10
  • [34] Dissipativity of Runge-Kutta methods for a class of nonlinear functional-integro-differential equations
    Qing Liao
    Liping Wen
    Advances in Difference Equations, 2017
  • [35] Existence Results for Integro-Differential Equations with Reflection
    Miraoui, Mohsen
    Repovs, Dusan D.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (08) : 919 - 934
  • [36] INSIDE DYNAMICS OF SOLUTIONS OF INTEGRO-DIFFERENTIAL EQUATIONS
    Bonnefon, Olivier
    Coville, Jerome
    Garnier, Jimmy
    Roques, Lionel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (10): : 3057 - 3085
  • [37] A note on a class of singular integro-differential equations
    Chakrabarti, A
    Sahoo, T
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1996, 106 (02): : 177 - 182
  • [38] Order-Optimal Spline Methods for Solving Singular Integro-Differential Equations
    Gabbasov, N. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (01) : 11 - 21
  • [39] Order-Optimal Spline Methods for Solving Singular Integro-Differential Equations
    N. S. Gabbasov
    Computational Mathematics and Mathematical Physics, 2024, 64 : 11 - 21
  • [40] Density solutions to a class of integro-differential equations
    Jedidi, Wissem
    Simon, Thomas
    Wang, Mm
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 134 - 152