Dissipativity of linear θ-methods for integro-differential equations

被引:20
作者
Gan, Siqing [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
dissipativity; integro-differential equation; theta-method; A-stability;
D O I
10.1016/j.camwa.2006.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the analytic and numerical dissipativity of nonlinear integro-differential equations (IDEs). A dissipativity criteria for IDEs is given. It is shown that any A-stable linear theta-method for the systems is dissipative. Numerical examples are given to confirm the theoretical results. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:449 / 458
页数:10
相关论文
共 20 条
[1]   STABILITY ANALYSIS OF RUNGE-KUTTA METHODS FOR VOLTERRA INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
BELLEN, A ;
JACKIEWICZ, Z ;
VERMIGLIO, R ;
ZENNARO, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :103-118
[2]  
Bellen A., 2003, Numerical methods for delay differential equations, numerical mathematics and scientific computation
[3]   STABILITY OF NUMERICAL-METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS [J].
BRUNNER, H ;
LAMBERT, JD .
COMPUTING, 1974, 12 (01) :75-89
[4]  
Burrage K., 1980, BIT (Nordisk Tidskrift for Informationsbehandling), V20, P185, DOI 10.1007/BF01933191
[5]  
HALE JK, 1986, P 9 DUND C ORD PART
[6]   Dissipativity of Runge-Kutta methods in Hilbert spaces [J].
Hill, AT .
BIT NUMERICAL MATHEMATICS, 1997, 37 (01) :37-42
[7]   Global dissipativity for A-stable methods [J].
Hill, AT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :119-142
[8]  
Huang Chengming, 2000, Mathematica Numerica Sinica, V22, P501
[9]   Dissipativity of one-leg methods for dynamical systems with delays [J].
Huang, CM .
APPLIED NUMERICAL MATHEMATICS, 2000, 35 (01) :11-22
[10]   Dissipativity of Runge-Kutta methods for dynamical systems with delays [J].
Huang, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (01) :153-166