Artificial intelligence in paediatric radiology: Future opportunities

被引:30
作者
Davendralingam, Natasha [1 ]
Sebire, Neil J. [1 ,2 ]
Arthurs, Owen J. [1 ,3 ]
Shelmerdine, Susan C. [1 ,3 ]
机构
[1] Great Ormond St Hosp Children NHS Fdn Trust, Dept Radiol, London, England
[2] Great Ormond St Hosp Children NHS Fdn Trust, Dept Histopathol, London, England
[3] UCL Great Ormond St Inst Child Hlth, London, England
基金
英国医学研究理事会;
关键词
NEURAL-NETWORKS;
D O I
10.1259/bjr.20200975
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) has received widespread and growing interest in healthcare, as a method to save time, cost and improve efficiencies. The high-performance statistics and diagnostic accuracies reported by using AI algorithms (with respect to predefined reference standards), particularly from image pattern recognition studies, have resulted in extensive applications proposed for clinical radiology, especially for enhanced image interpretation. Whilst certain sub-speciality areas in radiology, such as those relating to cancer screening, have received wide-spread attention in the media and scientific community, children's imaging has been hitherto neglected. In this article, we discuss a variety of possible 'use cases' in paediatric radiology from a patient pathway perspective where AI has either been implemented or shown early-stage feasibility, while also taking inspiration from the adult literature to propose potential areas for future development. We aim to demonstrate how a 'future, enhanced paediatric radiology service' could operate and to stimulate further discussion with avenues for research.
引用
收藏
页数:9
相关论文
共 87 条
[41]   Radiomics based on artificial intelligence in liver diseases: where are we? [J].
Hu, Wenmo ;
Yang, Huayu ;
Xu, Haifeng ;
Mao, Yilei .
GASTROENTEROLOGY REPORT, 2020, 8 (02) :90-97
[42]  
Improvement NHS, 2019, TRANSFORMING IMAGING
[43]   MR Imaging-Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma [J].
Iv, M. ;
Zhou, M. ;
Shpanskaya, K. ;
Perreault, S. ;
Wang, Z. ;
Tranvinh, E. ;
Lanzman, B. ;
Vajapeyam, S. ;
Vitanza, A. ;
Fisher, P. G. ;
Cho, Y. J. ;
Laughlin, S. ;
Ramaswamy, V. ;
Taylor, M. D. ;
Cheshier, S. H. ;
Grant, G. A. ;
Poussaint, T. Young ;
Gevaert, O. ;
Yeom, K. W. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (01) :154-161
[44]  
Jung Sung Mee, 2020, Yeungnam Univ J Med, V37, P159, DOI 10.12701/yujm.2020.00171
[45]   Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs [J].
Kim, Tae Kyung ;
Yi, Paul H. ;
Wei, Jinchi ;
Shin, Ji Won ;
Hager, Gregory ;
Hui, Ferdinand K. ;
Sair, Haris I. ;
Lin, Cheng Ting .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (06) :925-930
[46]   Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium? A Feasibility Study [J].
Kleesiek, Jens ;
Morshuis, Jan Nikolas ;
Isensee, Fabian ;
Deike-Hofmann, Katerina ;
Paech, Daniel ;
Kickingereder, Philipp ;
Koethe, Ullrich ;
Rother, Carsten ;
Forsting, Michael ;
Wick, Wolfgang ;
Bendszus, Martin ;
Schlemmer, Heinz-Peter ;
Radbruch, Alexander .
INVESTIGATIVE RADIOLOGY, 2019, 54 (10) :653-660
[47]   Predicting Outpatient Appointment Demand Using Machine Learning and Traditional Methods [J].
Klute, Brian ;
Homb, Andrew ;
Chen, Wei ;
Stelpflug, Aaron .
JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (09)
[48]   Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network [J].
Kromrey, M. -L. ;
Tamada, D. ;
Johno, H. ;
Funayama, S. ;
Nagata, N. ;
Ichikawa, S. ;
Kuehn, J. -P. ;
Onishi, H. ;
Motosugi, U. .
EUROPEAN RADIOLOGY, 2020, 30 (11) :5923-5932
[49]  
Kurasawa Hisashi, 2016, J Diabetes Sci Technol, V10, P730, DOI 10.1177/1932296815614866