ML-Based Massive MIMO Channel Prediction: Does It Work on Real-World Data?

被引:32
作者
Shehzad, Muhammad K. [1 ,2 ]
Rose, Luca [1 ]
Wesemann, Stefan [3 ]
Assaad, Mohamad [2 ]
机构
[1] Nokia Bell Labs, Radio Interface & Access Grp, F-91620 Nozay, France
[2] Cent Supelec, Lab Signals & Syst, F-91192 Gif Sur Yvette, France
[3] Nokia Bell Labs, Radio Syst Res, D-70469 Stuttgart, Germany
关键词
Channel estimation; Neurons; OFDM; Antenna measurements; Wireless communication; Transmitting antennas; Receiving antennas; AI; ML; CSI prediction; estimation; compression; mMIMO;
D O I
10.1109/LWC.2022.3146230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate channel state information (CSI) acquisition is hindered by CSI estimation errors, compression, feedback, and processing delays. We propose a machine learning (ML)-based massive multiple-input multiple-output (mMIMO) channel predictor (CP), which can work on the estimated channel and the compressed version of the estimated channel as well. While existing work has evaluated the performance of ML algorithms by only using the artificially generated channel realizations, this letter reports the results of the ML algorithm using the real-world channel realizations from a measurement campaign performed at Nokia Bell-Labs. The results corroborate the validity of the proposed ML-based CP.
引用
收藏
页码:811 / 815
页数:5
相关论文
共 13 条
[1]  
Adeogun R. O., 2014, 2014 IEEE 79 VEH TEC, P1
[2]   Autoregressive modeling for fading channel simulation [J].
Baddour, KE ;
Beaulieu, NC .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2005, 4 (04) :1650-1662
[3]   RECURRENT NEURAL NETWORKS AND ROBUST TIME-SERIES PREDICTION [J].
CONNOR, JT ;
MARTIN, RD ;
ATLAS, LE .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :240-254
[4]  
Jordan M.I., 1997, ADV PSYCHOL, V121, P471, DOI [DOI 10.1016/S0166-4115(97)80111-2, 10.1016/S0166-4115, 10.1016/S0166-4115(97)80111-2]
[5]   Massive MIMO Channel Prediction: Kalman Filtering Vs. Machine Learning [J].
Kim, Hwanjin ;
Kim, Sucheol ;
Lee, Hyeongtaek ;
Jang, Chulhee ;
Choi, Yongyun ;
Choi, Junil .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (01) :518-528
[6]  
Kingma Diederik P., 2015, P ICLR
[7]   The Rayleigh Fading Channel Prediction via Deep Learning [J].
Liao, Run-Fa ;
Wen, Hong ;
Wu, Jinsong ;
Song, Huanhuan ;
Pan, Fei ;
Dong, Lian .
WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2018,
[8]  
Liu W, 2006, IEEE VTS VEH TECHNOL, P2173
[9]   An Overview of Limited Feedback in Wireless Communication Systems [J].
Love, David J. ;
Heath, Robert W., Jr. ;
Lau, Vincent K. N. ;
Gesbert, David ;
Rao, Bhaskar D. ;
Andrews, Matthew .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2008, 26 (08) :1341-1365
[10]   An Introduction to Deep Learning for the Physical Layer [J].
O'Shea, Timothy ;
Hoydis, Jakob .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2017, 3 (04) :563-575