A family of interior-penalized weak Galerkin methods for second-order elliptic equations

被引:2
作者
Liu, Kaifang [1 ,2 ]
Song, Lunji [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Key Lab Appl Math & Complex Syst Gansu Prov, Lanzhou 730000, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 01期
关键词
interior-penalized weak Galerkin; finite element methods; second-order elliptic equation; superconvergence; FINITE-ELEMENT-METHOD; SCHEME;
D O I
10.3934/math.2021030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interior-penalized weak Galerkin (IPWG) finite element methods are proposed and analyzed for solving second order elliptic equations. The new methods employ the element (P-k, P-k, RTk), with dimensions of space d = 2, 3, and the optimal a priori error estimates in discrete H-1-norm and L-2 -norm are established. Moreover, provided enough smoothness of the exact solution, superconvergence in H-1 and L-2 norms can be derived. Some numerical experiments are presented to demonstrate flexibility, effectiveness and reliability of the IPWG methods. In the experiments, the convergence rates of the IPWG methods are optimal in L-2-norm, while they are suboptimal for NIPG and IIPG if the polynomial degree is even.
引用
收藏
页码:500 / 517
页数:18
相关论文
共 34 条
[1]  
Boffi D., 2013, MIXED FINITE ELEMENT, V44
[2]  
Brenner S. C., 2008, Texts in Applied Mathematics, V15, DOI DOI 10.1007/978-0-387-75934-0
[3]   A Weak Galerkin Method with C0 Element for Forth Order Linear Parabolic Equation [J].
Chai, Shimin ;
Zou, Yongkui ;
Zhao, Wenju .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (02) :467-485
[4]   Weak Galerkin method for the coupled Darcy-Stokes flow [J].
Chen, Wenbin ;
Wang, Fang ;
Wang, Yanqiu .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) :897-921
[5]  
Ern A., 2004, APPL MATH SCI, V159
[6]   Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities [J].
Geuzaine, Christophe ;
Remacle, Jean-Francois .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (11) :1309-1331
[7]   Weak Galerkin Finite Element Methods for Parabolic Equations [J].
Li, Qiaoluan H. ;
Wang, Junping .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (06) :2004-2024
[8]   Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity [J].
Lin, Guang ;
Liu, Jiangguo ;
Mu, Lin ;
Ye, Xiu .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 :422-437
[9]  
Liu K., 2017, DISCRET CONTIN DYN S, V22
[10]   AN OVER-PENALIZED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS [J].
Liu, Kaifang ;
Song, Lunji ;
Zhou, Shuangfeng .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (06) :866-880