Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials

被引:181
作者
Mortazavi, Bohayra [1 ,2 ]
Novikov, Ivan S. [3 ,4 ]
Podryabinkin, Evgeny V. [3 ]
Roche, Stephan [5 ,6 ,7 ]
Rabczuk, Timon [8 ]
Shapeev, Alexander V. [3 ]
Zhuang, Xiaoying [1 ,8 ]
机构
[1] Leibniz Univ Hannover, Dept Math & Phys, Chair Computat Sci & Simulat Technol, Appelstr 11, D-30157 Hannover, Germany
[2] Leibniz Univ Hannover, Cluster Excellence PhoenixD, Photon Opt & Engn Innovat Disciplines, Hannover, Germany
[3] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Nobel St 3, Moscow 143026, Russia
[4] Univ Stuttgart, Inst Mat Sci, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
[5] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain
[6] BIST, Campus UAB, Barcelona 08193, Spain
[7] ICREA Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain
[8] Tongji Univ, Dept Geotech Engn, Coll Civil Engn, Shanghai, Peoples R China
基金
俄罗斯科学基金会;
关键词
Machine-learning; Interatomic potentials; Phononic properties; 2D materials; TOTAL-ENERGY CALCULATIONS; CARBON; PLANAR;
D O I
10.1016/j.apmt.2020.100685
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phononic properties are commonly studied by calculating force constants using the density functional theory (DFT) simulations. Although DFT simulations offer accurate estimations of phonon dispersion relations or thermal properties, but for low-symmetry and nanoporous structures the computational cost quickly becomes very demanding. Moreover, the computational setups may yield nonphysical imaginary frequencies in the phonon dispersion curves, impeding the assessment of phononic properties and the dynamical stability of the considered system. Here, we compute phonon dispersion relations and examine the dynamical stability of a large ensemble of novel materials and compositions. We propose a fast and convenient alternative to DFT simulations which derived from machine-learning interatomic potentials passively trained over computationally efficient ab-initio molecular dynamics trajectories. Our results for diverse two-dimensional (2D) nanomaterials confirm that the proposed computational strategy can reproduce fundamental thermal properties in close agreement with those obtained via the DFT approach. The presented method offers a stable, efficient, and convenient solution for the examination of dynamical stability and exploring the phononic properties of low-symmetry and porous 2D materials. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Triazine-Based Graphitic Carbon Nitride: a Two-Dimensional Semiconductor [J].
Algara-Siller, Gerardo ;
Severin, Nikolai ;
Chong, Samantha Y. ;
Bjorkman, Torbjorn ;
Palgrave, Robert G. ;
Laybourn, Andrea ;
Antonietti, Markus ;
Khimyak, Yaroslav Z. ;
Krasheninnikov, Arkady V. ;
Rabe, Juergen P. ;
Kaiser, Ute ;
Cooper, Andrew I. ;
Thomas, Arne ;
Bojdys, Michael J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (29) :7450-7455
[2]  
[Anonymous], 2019, DEEP LEARNING ENABLE
[3]   STRUCTURE-PROPERTY PREDICTIONS FOR NEW PLANAR FORMS OF CARBON - LAYERED PHASES CONTAINING SP2 AND SP ATOMS [J].
BAUGHMAN, RH ;
ECKHARDT, H ;
KERTESZ, M .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (11) :6687-6699
[4]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[5]   Machine Learning Force Fields: Construction, Validation, and Outlook [J].
Botu, V. ;
Batra, R. ;
Chapman, J. ;
Ramprasad, R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) :511-522
[6]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[7]   Introduction to the theory of lattice dynamics [J].
Dove, M. T. .
NEUTRONS ET SIMULATIONS, JDN 18, 2010, :123-159
[8]  
Dove M.T., 1993, Introduction to Lattice Dynamics, DOI DOI 10.1119/1.17708
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Accelerating high-throughput searches for new alloys with active learning of interatomic potentials [J].
Gubaev, Konstantin ;
Podryabinkin, Evgeny, V ;
Hart, Gus L. W. ;
Shapeev, Alexander, V .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 156 :148-156