Strictly pseudoconvex domains and algebraic varieties

被引:0
作者
Nemirovskii, SY [1 ]
机构
[1] MOSCOW MV LOMONOSOV STATE UNIV,MOSCOW 117234,RUSSIA
关键词
compact complex manifold; algebraic variety; strictly pseudoconvex domain; Hedge index theorem; rational algebraic surface;
D O I
10.1007/BF02320368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we consider applications of strictly pseudoconvex domains to the problems of algebraicity and rationality. We give a new proof of the Kodaira theorem on the algebraicity of a surface and we also prove a multidimensional version of this theorem. Theorems analogous to the Hedge index theorem and the Lefschetz theorem about (1, 1)-classes are obtained for strictly pseudoconvex domains. Conjectures on the geometry of strictly pseudoconvex domains on algebraic surfaces are formulated.
引用
收藏
页码:306 / 312
页数:7
相关论文
共 11 条
  • [1] [Anonymous], 1978, Principles of algebraic geometry
  • [2] [Anonymous], ANAL FUNCTIONS
  • [3] [Anonymous], ANAL FUNCTIONS SEVER
  • [4] Barth W., 1984, COMPACT COMPLEX SURF
  • [5] Grauert H., 1984, Coherent analytic sheaves
  • [6] GRAUERT H, 1960, THEOREM ANAL GARBENT, V5
  • [7] IVASHKOVICH S, 1994, PSEUDOHOLOMORPHIC CU
  • [8] SHAVAREVICH IR, 1986, FDN ALGEBRAIC GEOMET, V1
  • [9] SHAVAREVICH IR, 1986, FDN ALGEBRAIC GEOMET, V2
  • [10] Suzuki O., 1975, PUBL RES I MATH SCI, V11, P185, DOI DOI 10.2977/PRIMS/1195191691