Density-dependent state-space model for population-abundance data with unequal time intervals

被引:38
|
作者
Dennis, Brian [1 ,2 ]
Ponciano, Jose Miguel [3 ]
机构
[1] Univ Idaho, Dept Fish & Wildlife Resources, Moscow, ID 83844 USA
[2] Univ Idaho, Dept Stat Sci, Moscow, ID 83844 USA
[3] Univ Florida, Dept Biol, Gainesville, FL 32611 USA
基金
美国国家卫生研究院;
关键词
density dependence; diffusion process; Gompertz model; lognormal distribution; mean-reverting process; Ornstein-Uhlenbeck process; state-space model; stationary distribution; stochastic differential equation; stochastic population model; EXTINCTION PARAMETERS; NUMERICAL-SIMULATION; PROCESS NOISE; SERIES; GROWTH; ESTIMABILITY; INFERENCE; ERROR;
D O I
10.1890/13-1486.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The Gompertz state-space (GSS) model is a stochastic model for analyzing time-series observations of population abundances. The GSS model combines density dependence, environmental process noise, and observation error toward estimating quantities of interest in biological monitoring and population viability analysis. However, existing methods for estimating the model parameters apply only to population data with equal time intervals between observations. In the present paper, we extend the GSS model to data with unequal time intervals, by embedding it within a state-space version of the Ornstein-Uhlenbeck process, a continuous-time model of an equilibrating stochastic system. Maximum likelihood and restricted maximum likelihood calculations for the Ornstein-Uhlenbeck state-space model involve only numerical maximization of an explicit multivariate normal likelihood, and so the extension allows for easy bootstrapping, yielding confidence intervals for model parameters, statistical hypothesis testing of density dependence, and selection among sub-models using information criteria. Ecologists and managers previously drawn to models lacking density dependence or observation error because such models accommodated unequal time intervals (for example, due to missing data) now have an alternative analysis framework incorporating density dependence, process noise, and observation error.
引用
收藏
页码:2069 / 2076
页数:8
相关论文
共 50 条
  • [1] Integrating population dynamics models and distance sampling data: a spatial hierarchical state-space approach
    Nadeem, Khurram
    Moore, Jeffrey E.
    Zhang, Ying
    Chipman, Hugh
    ECOLOGY, 2016, 97 (07) : 1735 - 1745
  • [2] Improved state-space models for inference about spatial and temporal variation in abundance from count data
    Hostetler, Jeffrey A.
    Chandler, Richard B.
    ECOLOGY, 2015, 96 (06) : 1713 - 1723
  • [3] Using a state-space population model to detect age-dependent species interactions
    Patin, Remi
    Rogers, Lauren A.
    Ohlberger, Jan
    CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2016, 73 (05) : 811 - 818
  • [4] Demographic signals of population decline and time to extinction in a seasonal, density-dependent model
    Burant, Joseph B.
    Norris, D. Ryan
    THEORETICAL ECOLOGY, 2023, 16 (3) : 181 - 194
  • [5] Demographic signals of population decline and time to extinction in a seasonal, density-dependent model
    Joseph B. Burant
    D. Ryan Norris
    Theoretical Ecology, 2023, 16 : 181 - 194
  • [6] Estimation of deer population dynamics using a bayesian state-space model with multiple abundance indices
    Iijima, Hayato
    Nagaike, Takuo
    Honda, Takeshi
    JOURNAL OF WILDLIFE MANAGEMENT, 2013, 77 (05): : 1038 - 1047
  • [7] Derivation of a State-Space Model by Functional Data Analysis
    Mariano J. Valderrama
    Mónica Ortega-Moreno
    Pedro González
    Ana M. Aguilera
    Computational Statistics, 2003, 18 : 533 - 546
  • [8] Derivation of a state-space model by functional data analysis
    Valderrama, MJ
    Ortega-Moreno, M
    González, P
    Aguilera, AM
    COMPUTATIONAL STATISTICS, 2003, 18 (04) : 533 - 546
  • [9] Diffusion limits for a nonlinear density dependent space-time population model
    Blount, D
    ANNALS OF PROBABILITY, 1996, 24 (02): : 639 - 659
  • [10] Application of State-Space Model to Exact Time Series Forecasting
    Zheng Changjiang
    Cui Youxiang
    Dong Yujin
    Xie Fuji
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2014, 5 : 1145 - +