Thermal and Electrical Conductivities of a Three-Dimensional Ideal Anyon Gas with Fractional Exclusion Statistics

被引:0
作者
Qin Fang [1 ,2 ,3 ,4 ]
Wen Wen [5 ]
Chen Ji-Sheng [3 ,4 ]
机构
[1] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435003, Peoples R China
[2] Hubei Polytech Univ, Inst Quantum Mat, Huangshi 435003, Peoples R China
[3] Cent China Normal Univ, Dept Phys, Wuhan 430079, Peoples R China
[4] Cent China Normal Univ, Inst Nanosci & Nanotechnol, Wuhan 430079, Peoples R China
[5] Hohai Univ, Dept Math & Phys, Changzhou 213022, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal conductivity; electrical conductivity; kinetic theory; fractional exclusion statistics; ARBITRARY DIMENSIONS; THERMODYNAMIC PROPERTIES; BOLTZMANN-EQUATION; HALDANE LIQUID; FERMI-LIQUID; QUANTUM; PARTICLES; MECHANICS; TRANSPORT; SYSTEMS;
D O I
10.1088/0253-6102/62/1/14
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The thermal and electrical transport properties of an ideal anyon gas within fractional exclusion statistics are studied. By solving the Boltzmann equation with the relaxation-time approximation, the analytical expressions for the thermal and electrical conductivities of a three-dimensional ideal anyon gas are given. The low-temperature expressions for the two conductivities are obtained by using the Sommerfeld expansion. It is found that the Wiedemann-Franz law should be modified by the higher-order temperature terms, which depend on the statistical parameter g for a charged anyon gas. Neglecting the higher-order terms of temperature, the Wiedemann-Franz law is respected, which gives the Lorenz number. The Lorenz number is a function of the statistical parameter g.
引用
收藏
页码:81 / 85
页数:5
相关论文
共 49 条
[1]   Form Invariant Sommerfeld Electrical Conductivity in Generalised d Dimensions [J].
Acharyya, Muktish .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (05) :943-944
[2]   Universality of heat and entropy transport in 1D channels at arbitrary temperatures [J].
Anghel, D. -V. .
EPL, 2011, 94 (06)
[3]  
Anghel D.V., 2002, J PHYS A, V35, P725
[4]   Fractional exclusion statistics in general systems of interacting particles [J].
Anghel, Dragos-Victor .
PHYSICS LETTERS A, 2008, 372 (36) :5745-5747
[5]   The thermodynamic limit for fractional exclusion statistics [J].
Anghel, Dragos-Victor .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (47) :F1013-F1019
[6]   Universal features in the thermodynamics and heat transport by particles of any statistics [J].
Anghel, Dragos-Victor .
ADVANCED MANY-BODY AND STATISTICAL METHODS IN MESOSCOPIC SYSTEMS, 2012, 338
[7]   Fractional exclusion statistics in general systems of interacting particle (vol 372, pg 5745, 2008) [J].
Anghel, Dragos-Victor .
PHYSICS LETTERS A, 2012, 376 (6-7) :892-892
[8]  
Anghel DV, 2009, ROM J PHYS, V54, P281
[9]  
Aoyama T, 2001, EUR PHYS J B, V20, P123
[10]   A Quantum Boltzmann Equation for Haldane Statistics and Hard Forces; the Space-Homogeneous Initial Value Problem [J].
Arkeryd, L. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 298 (02) :573-583