Experimental Gaussian Boson sampling

被引:56
作者
Zhong, Han-Sen [1 ,2 ,3 ]
Peng, Li-Chao [1 ,2 ,3 ]
Li, Yuan [1 ,2 ,3 ]
Hu, Yi [1 ,2 ,3 ]
Li, Wei [1 ,2 ,3 ]
Qin, Jian [1 ,2 ,3 ]
Wu, Dian [1 ,2 ,3 ]
Zhang, Weijun [4 ]
Li, Hao [4 ]
Zhang, Lu [4 ]
Wang, Zhen [4 ]
You, Lixing [4 ]
Jiang, Xiao [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ]
Liu, Nai-Le [1 ,2 ,3 ]
Dowling, Jonathan P. [3 ,5 ,6 ,7 ]
Lu, Chao-Yang [1 ,2 ,3 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Anhui, Peoples R China
[4] Chinese Acad Sci, SIMIT, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[5] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
[6] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[7] NYU ECNU Inst Phys NYU Shanghai, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum information; Boson sampling; Gaussian Boson sampling; Squeezed state; Quantum advantage; Quantum approximate optimization;
D O I
10.1016/j.scib.2019.04.007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gaussian Boson sampling (GBS) provides a highly efficient approach to make use of squeezed states from parametric down-conversion to solve a classically hard-to-solve sampling problem. The GBS protocol not only significantly enhances the photon generation probability, compared to standard Boson sampling with single photon Fock states, but also links to potential applications such as dense subgraph problems and molecular vibronic spectra. Here, we report the first experimental demonstration of GBS using squeezed-state sources with simultaneously high photon indistinguishability and collection efficiency. We implement and validate 3-, 4- and 5-photon GBS with high sampling rates of 832, 163 and 23 kHz, respectively, which is more than 4.4, 12.0, and 29.5 times faster than the previous experiments. Further, we observe a quantum speed-up on a NP-hard optimization problem when comparing with simulated thermal sampler and uniform sampler. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:511 / 515
页数:5
相关论文
共 30 条
[1]  
Aaronson S, 2013, THEOR COMPUT, V9, P110
[2]   BosonSampling with lost photons [J].
Aaronson, Scott ;
Brod, Daniel J. .
PHYSICAL REVIEW A, 2016, 93 (01)
[3]  
Aaronson S, 2014, QUANTUM INF COMPUT, V14, P1383
[4]  
[Anonymous], 2019, ARXIV190200462
[5]   Using Gaussian Boson Sampling to Find Dense Subgraphs [J].
Arrazola, Juan Miguel ;
Bromley, Thomas R. .
PHYSICAL REVIEW LETTERS, 2018, 121 (03)
[6]   Quantum approximate optimization with Gaussian boson sampling [J].
Arrazola, Juan Miguel ;
Bromley, Thomas R. ;
Rebentrost, Patrick .
PHYSICAL REVIEW A, 2018, 98 (01)
[7]   Driven Boson Sampling [J].
Barkhofen, Sonja ;
Bartley, Tim J. ;
Sansoni, Linda ;
Kruse, Regina ;
Hamilton, Craig S. ;
Jex, Igor ;
Silberhorn, Christine .
PHYSICAL REVIEW LETTERS, 2017, 118 (02)
[8]   Gaussian boson sampling for perfect matchings of arbitrary graphs [J].
Bradler, Kamil ;
Dallaire-Demers, Pierre-Luc ;
Rebentrost, Patrick ;
Su, Daiqin ;
Weedbrook, Christian .
PHYSICAL REVIEW A, 2018, 98 (03)
[9]   Photonic Boson Sampling in a Tunable Circuit [J].
Broome, Matthew A. ;
Fedrizzi, Alessandro ;
Rahimi-Keshari, Saleh ;
Dove, Justin ;
Aaronson, Scott ;
Ralph, Timothy C. ;
White, Andrew G. .
SCIENCE, 2013, 339 (6121) :794-798
[10]  
Crespi A, 2013, NAT PHOTONICS, V7, P545, DOI [10.1038/NPHOTON.2013.112, 10.1038/nphoton.2013.112]