On far-outlying constant mean curvature spheres in asymptotically flat Riemannian 3-manifolds

被引:9
|
作者
Chodosh, Otis [1 ,2 ]
Eichmair, Michael [3 ]
机构
[1] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[2] Stanford Univ, Dept Math, Bldg 380, Stanford, CA 94305 USA
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2020年 / 767卷
关键词
SURFACES; FOLIATION; MASS;
D O I
10.1515/crelle-2019-0034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the Lyapunov-Schmidt analysis of outlying stable constant mean curvature spheres in the work of S. Brendle and the second-named author [3] to the "far-off-center" regime and to include general Schwarzschild asymptotics. We obtain sharp existence and non-existence results for large stable constant mean curvature spheres that depend delicately on the behavior of scalar curvature at infinity.
引用
收藏
页码:161 / 191
页数:31
相关论文
共 50 条