ON INDUCTIVE LIMIT SPECTRAL TRIPLES

被引:6
作者
Floricel, Remus [1 ]
Ghorbanpour, Asghar [2 ]
机构
[1] Univ Regina, Dept Math, Regina, SK S4S 0A2, Canada
[2] Western Univ, Dept Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Spectral triples; inductive systems; inductive limits; SPACES;
D O I
10.1090/proc/14583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an inductive system of spectral triples {(A(j), H-j, D-j)}(j), we find conditions under which the triple (lim(->) A(j), lim(->) H-j, lim(->) D-j) is a spectral triple. We also analyze and describe some classical examples of spectral triples in terms of these conditions.
引用
收藏
页码:3611 / 3619
页数:9
相关论文
共 15 条
[1]  
Aastrup J, 2009, J NONCOMMUT GEOM, V3, P47
[2]   On spectral triples in quantum gravity: I [J].
Aastrup, Johannes ;
Grimstrup, Jesper Moller ;
Nest, Ryszard .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (06)
[3]   Spectral triples for noncommutative solenoidal spaces from self-coverings [J].
Aiello, Valeriano ;
Guido, Daniele ;
Isola, Tommaso .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1378-1412
[4]   Spectral triples on the Jiang-Su algebra [J].
Bassi, Jacopo ;
Dabrowski, Ludwik .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
[5]   Categorical Non-commutative Geometry [J].
Bertozzini, Paolo ;
Conti, Roberto ;
Lewkeeratiyutkul, Wicharn .
ALGEBRA, GEOMETRY, AND MATHEMATICAL PHYSICS 2010, 2012, 346
[6]   On unbounded p-summable Fredholm modules [J].
Carey, AL ;
Phillips, J ;
Sukochev, FA .
ADVANCES IN MATHEMATICS, 2000, 151 (02) :140-163
[7]  
Christensen E, 2006, J OPERAT THEOR, V56, P17
[8]  
Connes A, 2008, ON SPACE AND TIME, P1
[9]   COMPACT METRIC-SPACES, FREDHOLM MODULES, AND HYPERFINITENESS [J].
CONNES, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :207-220
[10]  
Connes A., 1994, Noncommutative Geometry