Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction

被引:56
作者
Bodapati, Jyostna Devi [1 ]
Shaik, Nagur Shareef [1 ]
Naralasetti, Veeranjaneyulu [1 ]
机构
[1] Vignans Fdn Sci Technol & Res, Vadlamudi 522213, India
关键词
Diabetic retinopathy (DR); Deep features; Deep convolution features; Deep feature aggregation; Weighted fusion; Pooling; MICROANEURYSMS; CLASSIFICATION; ALGORITHM; DIAGNOSIS;
D O I
10.1007/s11760-020-01816-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Diabetic retinopathy (DR) is one of the main causes of loss of vision and blindness in humans across the world. DR is usually found in patients suffering from diabetes for a long period. Automation of DR diagnosis rescues many people from going blind by identifying the disease at the early stages. In this work, we introduce a robust model for DR severity level prediction by leveraging features extracted from pre-trained models to represent DR images. The activation filter values from multiple convolution blocks of VGG-16 are extracted and aggregated using pooling and fusion methods. The aggregation module produces a compact, informative, and discriminative representation of the retinal images by removing noisy and redundant features using pooling and fusion approaches. These feature representations are fed to the proposed DNN architecture to identify the severity level of DR. On the benchmark Kaggle APTOS 2019 contest dataset, our proposed method sets a new state-of-the-art result with an accuracy of 84.31% and an AUC 97. Experimental studies reveal that the proposed model exhibits superior performance compared with the existing models, especially in the case of severe and proliferate stage DR images.
引用
收藏
页码:923 / 930
页数:8
相关论文
共 32 条
[1]   Identification and classification of microaneurysms for early detection of diabetic retinopathy [J].
Akram, M. Usman ;
Khalid, Shehzad ;
Khan, Shoab A. .
PATTERN RECOGNITION, 2013, 46 (01) :107-116
[2]  
Bodapati J.D., 2019, J. Cyber Secur. Mobil, V8, P261, DOI [DOI 10.13052/JCSM2245-1439.825, 10.13052/jcsm2245-1439.825]
[3]  
Bodapati J.D., 2019, INT J RECENT TECHNOL, V7, P147
[4]  
Bodapati JD., 2019, INT J INNOV TECHNOL, V8, P1928
[5]   Blended Multi-Modal Deep ConvNet Features for Diabetic Retinopathy Severity Prediction [J].
Bodapati, Jyostna Devi ;
Naralasetti, Veeranjaneyulu ;
Shareef, Shaik Nagur ;
Hakak, Saqib ;
Bilal, Muhammad ;
Maddikunta, Praveen Kumar Reddy ;
Jo, Ohyun .
ELECTRONICS, 2020, 9 (06)
[6]   Application of Random Forests Methods to Diabetic Retinopathy Classification Analyses [J].
Casanova, Ramon ;
Saldana, Santiago ;
Chew, Emily Y. ;
Danis, Ronald P. ;
Greven, Craig M. ;
Ambrosius, Walter T. .
PLOS ONE, 2014, 9 (06)
[7]   Retinal arteriolar dilation predicts retinopathy in adolescents with type 1 diabetes [J].
Cheung, Ning ;
Rogers, Sophie L. ;
Donaghue, Kim C. ;
Jenkins, Alicia J. ;
Tikellis, Gabriella ;
Wong, Tien Yin .
DIABETES CARE, 2008, 31 (09) :1842-1846
[8]   Microaneurysm detection in fundus images using a two-step convolutional neural network [J].
Eftekhari, Noushin ;
Pourreza, Hamid-Reza ;
Masoudi, Mojtaba ;
Ghiasi-Shirazi, Kamaledin ;
Saeedi, Ehsan .
BIOMEDICAL ENGINEERING ONLINE, 2019, 18 (1)
[9]   Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis [J].
Flaxman, Seth R. ;
Bourne, Rupert R. A. ;
Resnikoff, Serge ;
Ackland, Peter ;
Braithwaite, Tasanee ;
Cicinelli, Maria V. ;
Das, Aditi ;
Jonas, Jost B. ;
Keeffe, Jill ;
Kempen, John H. ;
Leasher, Janet ;
Limburg, Hans ;
Naidoo, Kovin ;
Pesudovs, Konrad ;
Silvester, Alex ;
Stevens, Gretchen A. ;
Tahhan, Nina ;
Wong, Tien Y. ;
Taylor, Hugh R. .
LANCET GLOBAL HEALTH, 2017, 5 (12) :E1221-E1234
[10]   Detection of Diabetic Retinopathy Based on a Convolutional Neural Network Using Retinal Fundus Images [J].
Garcia, Gabriel ;
Gallardo, Jhair ;
Mauricio, Antoni ;
Lopez, Jorge ;
Del Carpio, Christian .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 :635-642