The gradient descent method from the perspective of fractional calculus

被引:8
作者
Hai, Pham Viet [1 ,2 ]
Rosenfeld, Joel A. [3 ]
机构
[1] Vietnam Natl Univ, Univ Sci, Fac Math Mech & Informat, Hanoi, Vietnam
[2] Thang Long Univ, Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
fractional calculus; fractional differential equations; gradient method; RESPECT; MODELS;
D O I
10.1002/mma.7127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by gradient methods in optimization theory, we give methods based on psi-fractional derivatives of order alpha in order to solve unconstrained optimization problems. The convergence of these methods is analyzed in detail. This paper also presents an Adams-Bashforth-Moulton (ABM) method for the estimation of solutions to equations involving psi-fractional derivatives. Numerical examples using the ABM method show that the fractional order alpha and weight psi are tunable parameters, which can be helpful for improving the performance of gradient descent methods.
引用
收藏
页码:5520 / 5547
页数:28
相关论文
共 34 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Monteiro, M. Teresa T. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) :336-352
[3]   A Caputo fractional derivative of a function with respect to another function [J].
Almeida, Ricardo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :460-481
[4]  
Boyd S., 2009, Convex Optimization, DOI DOI 10.1017/CBO9780511804441
[5]   Convex Lyapunov functions for stability analysis of fractional order systems [J].
Chen, Weisheng ;
Dai, Hao ;
Song, Yanfei ;
Zhang, Zhengqiang .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (07) :1070-1074
[6]   Study on fractional order gradient methods [J].
Chen, Yuquan ;
Gao, Qing ;
Wei, Yiheng ;
Wang, Yong .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 :310-321
[7]  
Coddington E.A., 1955, Theory of Ordinary Differential Equations
[8]  
Diethelm K., 2010, LECT NOTES MATH
[9]  
Dixon WE, 2013, Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach
[10]   GENERAL FRACTIONAL CALCULUS IN NON-SINGULAR POWER-LAW KERNEL APPLIED TO MODEL ANOMALOUS DIFFUSION PHENOMENA IN HEAT TRANSFER PROBLEMS [J].
Gao, Feng .
THERMAL SCIENCE, 2017, 21 :S11-S18