Convergence of iterative learning control for SISO nonrepetitive systems subject to iteration-dependent uncertainties

被引:64
作者
Meng, Deyuan [1 ,2 ]
Moore, Kevin L. [3 ]
机构
[1] Beihang Univ BUAA, Res Div 7, Beijing 100191, Peoples R China
[2] Beihang Univ BUAA, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] Colorado Sch Mines, Dept Elect Engn & Comp Sci, Golden, CO 80401 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Iterative learning control; Nonrepetitive systems; Iteration-dependent uncertainty; Robust convergence; Extended relative degree; CONTROL DESIGN; TIME-SYSTEMS; DISTURBANCES; NETWORKS; FEEDBACK;
D O I
10.1016/j.automatica.2017.02.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the robust convergence properties of iterative learning control (ILC) for single-input, single-output (SISO), nonrepetitive systems subject to iteration-dependent uncertainties that arise in not only initial states and external disturbances but also plant models. Given an extended relative degree condition, it is possible to propose necessary and sufficient (NAS) conditions for robust ILC convergence. The tracking error bound is shown to depend continuously on the bounds of the iteration-dependent uncertainties. When the iteration-dependent uncertainties are bounded, NAS conditions exist to guarantee bounded system trajectories and output tracking error. If the iteration-dependent uncertainties converge, then NAS conditions ensure bounded system trajectories and zero output tracking error. The results are also extended to a class of affine nonlinear systems satisfying a Lipschitz condition. Simulation tests on a representative batch process demonstrate the validity of the obtained robust ILC convergence results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:167 / 177
页数:11
相关论文
共 34 条
  • [1] Stability analysis of discrete-time iterative learning control systems with interval uncertainty
    Ahn, Hyo-Sung
    Moore, Kevin L.
    Chen, YangQuan
    [J]. AUTOMATICA, 2007, 43 (05) : 892 - 902
  • [2] Iterative learning control: Brief survey and categorization
    Ahn, Hyo-Sung
    Chen, YangQuan
    Moore, Kevin L.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2007, 37 (06): : 1099 - 1121
  • [3] Altin B, 2015, P AMER CONTR CONF, P4880, DOI 10.1109/ACC.2015.7172098
  • [4] A global robust iterative learning position control for current-fed permanent magnet step motors
    Bifaretti, Stefano
    Tomei, Patrizio
    Verrelli, Cristiano Maria
    [J]. AUTOMATICA, 2011, 47 (01) : 227 - 234
  • [5] A survey of iterative learning control
    Bristow, Douglas A.
    Tharayil, Marina
    Alleyne, Andrew G.
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (03): : 96 - 114
  • [6] Linear Parameter-Varying Iterative Learning Control With Application to a Linear Motor System
    Butcher, Mark
    Karimi, Alireza
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2010, 15 (03) : 412 - 420
  • [7] An iterative learning controller with initial state learning
    Chen, Y
    Wen, C
    Gong, Z
    Sun, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (02) : 371 - 376
  • [8] Chen YQ, 2002, IEEE DECIS CONTR P, P3350, DOI 10.1109/CDC.2002.1184392
  • [9] Further results on adaptive iterative learning control of robot manipulators
    Chien, Chiang-Ju
    Tayebi, Abdelhamid
    [J]. AUTOMATICA, 2008, 44 (03) : 830 - 837
  • [10] Chin I, 2004, AUTOMATICA, V40, P1913, DOI [10.1016/j.automatica.2004.05.011, 10.1016/j.automatica.2004.05.012]